Organofluorine Chemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Organofluorine Chemistry - Группа авторов страница 15

Organofluorine Chemistry - Группа авторов

Скачать книгу

1.19a). The most prominent feature using heteroaryl sulfones as fluoroalkyl radical precursors is that they are reactivity‐tunable. By slightly changing the heteroaryl rings, the redox potential of fluorinated heteroaryl sulfones can be varied, ensuring the efficient generation of various fluoroalkyl radicals (Scheme 1.19b).

c01h018 c01h019 c01h020

c01h021 c01h022 c01h023

      Our efforts in the development of novel reagents for fluoroalkylation, fluoroolefination, and fluorination by probing the unique fluorine effects have been summarized. During our research work, we realized that (i) there are often unique fluorine effects in organic reactions, (ii) tackling the unique fluorine effect and unveiling the relationships among fluoroalkylation, fluoroolefination, and fluorination enable us to develop various reagents for synthetic organofluorine chemistry, and (iii) organofluorine reactions are not only practically useful but also provide fundamentally intriguing insights into generally organic reactions.

      1 1 (a) Uneyama, K. (2006). Organofluorine Chemistry. Oxford: Blackwell.(b) Ojima, I. (2009). Fluorine in Medicinal Chemistry and Chemical Biology. Chichester, UK: Wiley‐Blackwell.(c) Gouverneur, V. and Müller, K. (2011). Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. London: Imperial College Press.(d) Kirsch, P. (2013). Modern Fluoroorganic Chemistry: Synthesis. Reactivity, Applications, 2e. Weinheim: Wiley‐VCH.

      2 2 The newly approved drugs can be found by searching in the following website: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products.

      3 3 O'Hagan, D. and Deng, H. (2015). Chem. Rev. 115: 634–649.

      4 4 (a) Hu, J. (2009). J. Fluorine Chem. 130: 1130–1139.(b) Zhang, W., Ni, C., and Hu, J. (2012). Selective fluoroalkylation of organic compounds by tackling the “negative fluorine effect”. In: Fluorous Chemistry (ed. I.T. Horváth), 25–44. Berlin: Springer.(c) Ni, C. and Hu, J. (2011). Synlett.: 770–782.(d) Hu, J., Zhang, W., and Wang, F. (2009). Chem. Commun.: 7465–7478.(e) Shen, X. and Hu, J. (2014). Eur. J. Org. Chem. 2014: 4437–4451.(f) Ni, C., Hu, M., and Hu, J. (2015). Chem. Rev. 115: 765–825.(g) Ni, C. and Hu, J. (2016). Chem. Soc. Rev. 45: 5441–5454.(h) Zeng, Y. and Hu, J. (2016). Synthesis

Скачать книгу