Hydrogeology, Chemical Weathering, and Soil Formation. Allen Hunt

Чтение книги онлайн.

Читать онлайн книгу Hydrogeology, Chemical Weathering, and Soil Formation - Allen Hunt страница 20

Автор:
Жанр:
Серия:
Издательство:
Hydrogeology, Chemical Weathering, and Soil Formation - Allen Hunt

Скачать книгу

I. A. (1992). History of soil science: From its inception to the present. New Delhi: Oxonian Press.

      82 Leguédois, S., Séré, G., Auclerc, A., Cortet, J., Huot, H., Ouvrard, S., et al. (2016). Modelling pedogenesis of Technosols. Geoderma, 262, 199–212.

      83 Li, X., McCarty, G. W., Karlenc, D. L., & Cambardellac, C. A. (2018). Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields. Catena, 120, 222–232.

      84 Lin, H. S. (2003). Hydropedology. Vadose Zone Journal, 2, 1–11.

      85 Lin, H. S. (2011). Three principles of soil change and pedogenesis in time and space. Soil Science Society of America Journal, 75, 2049–2070.

      86 Lin, H. S. (2012). Hydropedology: Addressing fundamentals and building bridges to understand complex pedologic and hydrologic interactions. In H. Lin (Ed.), Hydropedology: Synergistic integration of soil science and hydrology (pp. 3–40). Amsterdam: Academic Press.

      87 Ma, Y., Lia, X., Guo, Li, & Lin, H. (2017). Hydropedology: Interactions between pedologic and hydrologic processes across spatiotemporal scales. Earth‐Science Reviews, 171, 181–195.

      88 Major, J. (1951). A functional factorial approach to plant ecology. Ecology, 32, 392–412.

      89 Mattson, S. (1938). The constitution of the pedosphere. Annals of the Agricultural College of Sweden, 5, 261–276.

      90 McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52.

      91 McSweeney, K., Slater, B. K., Hammer, R. D., Bell, J. C., Gessler, P. E., & Petersen, G. W. (1994). Towards a new framework for modeling the soil–landscape continuum. In R. Amundson, J. Harden, & M. Singer (Eds.), Factors of soil formation: A fiftieth anniversary retrospective (Soil Science Society of America Special Publication Number 33, pp. 127–145). Madison, WI: Soil Science Society of America.

      92 Milne, G. (1935a). Some suggested units of classification and mapping, particularly for East African soils. Soil Research, 4, 183–198.

      93 Milne, G. (1935b). Composite units for the mapping of complex soil associations. Transactions of the Third International Congress of Soil Science, Oxford, England, 1935. 1, 345–7.

      94 Milne, G. (1936). Normal erosion as a factor in soil profile development. Nature, 138, 548–549.

      95 Minasny, B., & McBratney, A. B. (1999). A rudimentary mechanistic model for soil production and landscape development. Geoderma, 90, 3–21.

      96 Minasny, B., McBratney, A. B., & Salvador‐Blanes, S. (2008). Quantitative models for pedogenesis: A review. Geoderma, 144, 140–157.

      97 Moore, I. D., Gessler, P. E., Nielsen, G. A., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–452.

      98 Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5, 3–30.

      99 Morison, C. G. T. (1949). The catena concept and the classification of tropical soils. In Proceedings of the First Commonwealth Conference on Tropical and Sub‐Tropical Soils, 1948 (Commonwealth Bureau of Soil Science, Technical Communication No. 46, pp. 124–128). Harpenden, England: Commonwealth Bureau of Soil Science.

      100 Morison, C. G. T., Hoyle, A. C., & Hope‐Smith, J. F. (1948). Tropical soil–vegetation catenas and mosaics: A study in the south‐western part of the Anglo‐Egyptian Sudan. Journal of Ecology, 36, 1–84.

      101 Muhs, D. R. (1982). The influence of topography on the spatial variability of soils in Mediterranean climates. In C.E. Thorn (Ed.), Space and time in geomorphology (pp. 269–284). London: George Allen & Unwin.

      102 Muhs, D. R. (1984). Intrinsc thresholds in soil systems. Physical Geography, 5, 99–110.

      103 National Research Council (2001). Basic research opportunities in Earth science. Washington, DC: National Academy Press.

      104 Neustruev, S. S. (1915). On soil combination of plains and uplands [in Russian]. Pochvovednie [Soil Science], 1, 62–73.

      105 Nikiforoff, C. C. (1959). Reappraisal of the soil. Science, 129, 186–196.

      106 Odgers, N. P., McBratney, A. B., & Minasny, B. (2008). Generation of kth‐order random toposequences. Computers & Geosciences, 34, 479–490.

      107 Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173–1179.

      108 Pawlika, Ł., & Šamonil, P. (2018). Soil creep: The driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems – A critical literature review. Earth‐Science Reviews, 178, 257–278.

      109 Peacock, E., & Fant, D. W. (2002). Biomantle formation and artifact translocation in upland sandy soils: An example from the Holly Springs National Forest, North‐Central Mississippi, U.S.A. Geoarchaeology: An International Journal, 17, 91–114.

      110 Pereira, T. T. C., Almeida, I. C. C., de Oliveira, F. S., Schaefer, C. E. G. R., de Souza Pinheiro, L., & Matuk, F. A. (2018). Hydropedology of a high tableland with cerrado, Brazilian Central Plateau: The Frutal Catchment case study. Revista Brasileira de Ciência do Solo, 42, e0160523. https://dx.doi.org/10.1590/18069657rbcs20160523

      111 Phillips, J. D. (1989). An evaluation of the state factor model of soil ecosystems. Ecological Modelling, 45, 165–177.

      112 Phillips, J. D. (1993a). Progressive and regressive pedogenesis and complex soil evolution. Quaternary Research, 40, 169–176.

      113 Phillips, J. D. (1993b). Stability implications of the state factor model of soils as a nonlinear dynamical system. Geoderma, 58, 1–15.

      114 Phillips, J. D. (1998). On the relations between complex systems and the factorial model of soil formation (with discussion). Geoderma, 86, 1–21.

      115 Phillips, J. D. (2001). The relative importance of intrinsic and extrinsic factors in pedodiversity. Annals of the Association of American Geographers, 91, 609–621.

      116 Phillips, J. D. (2013). Nonlinear dynamics, divergent evolution, and pedodiversity. In J. J. Ibãnez & J. Bockheim (Eds.), Pedodiversity (pp. 59–78). Boca Raton, Florida: CRC Press.

      117 Phillips, J. D. (2017). Soil complexity and pedogenesis. Soil Science, 182, 117–127.

      118 Polynov, B. B. ( 1935). Types of weathering crust. Transactions of the Third International Congress of Soil Science, Oxford, England, 1935, 1, 327–330.

      119 Polynov, B. B. (1937). The cycle of weathering. Translated from Russian by A. Muir; foreword by W. G. Ogg. London: Thomas Murby.

      120 Quijano, J., & Lin H. (2014). Entropy in the critical zone: A comprehensive review. Entropy, 16, 3482–3536.

      121 Rasmussen, C., Pelletier, J. D., Troch, P. A., Swetnam, T. L., & Chorover, J. (2015). Quantifying topographic and vegetation effects on the transfer of energy and mass to the critical zone. Vadose Zone Journal, 14(11). doi:

Скачать книгу