Hydrogeology, Chemical Weathering, and Soil Formation. Allen Hunt

Чтение книги онлайн.

Читать онлайн книгу Hydrogeology, Chemical Weathering, and Soil Formation - Allen Hunt страница 21

Автор:
Жанр:
Серия:
Издательство:
Hydrogeology, Chemical Weathering, and Soil Formation - Allen Hunt

Скачать книгу

C., Southard, R. J., & Horwath, W. R. (2005). Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Science Society of America Journal, 69, 1266–1274.

      123 Rasmussen, C., & Tabor, N. J. (2007). Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Science Society of America Journal, 71, 1719–1729.

      124 Regan, E. J. (1977). A natural energy basis for soils and urban growth in Florida (master’s thesis). University of Florida.

      125 Richter, D. deB., & Yaalon, D. H. (2011). “The Changing Model of Soil” revisited. Soil Science Society of America Journal, 76, 766–778.

      126 Robinson, G. W. (1936). Normal erosion as a factor in soil profile development. Nature, 137, 950.

      127 Rode, A. A. (1947). The soil‐forming process and soil evolution. Jerusalem: Israel Program for Scientific Translations (Translated into English by J. S. Joffe, 1961).

      128 Roy, A. G., Jarvis, R. S., & Arnett, R. R. (1980). Soil‐slope relationships within a drainage basin. Annals of the Association of American Geographers, 70, 397–412.

      129 Ruhe, R. V. (1960). Elements of the soil landscape. Transactions of the Seventh International Congress of Soil Science, Madison, 4, 165–170.

      130 Ruhe, R. V. (1975). Review of “Pedology, Weathering and Geomorphological Research” by P. W. Birkeland. Geoderma, 14, 176–177.

      131 Ruhe, R. V., & Walker, P. H. (1968). Hillslope models and soil formation: I. Open systems. Transactions of the Ninth International Congress of Soil Science, Adelaide, 4, 551–560.

      132 Runge, E. C. A. (1973). Soil development sequences and energy models. Soil Science, 115, 183–193.

      133 Saco, P. M., & Moreno‐de las Heras, M. (2013). Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resources Research, 49, 115–126.

      134 Salvador‐Blanes, S., Minasny, B., and McBratney, A. B. (2007). Modelling long‐term in situ soil profile evolution: Application to the genesis of soil profiles containing stone layers. European Journal of Soil Science, 58, 1535–1548.

      135 Sasscer, D. C., Jordan, C. F., & Kline, J. R. (1971). A mathematical model of tritiated and stable water movement in and old‐field system. In D. J. Nelson (Ed.), Radionuclides in Ecosystems. Proceedings of the Third National Symposium on Radioecology (pp. 915–923). CONF‐710501‐P1, US Atomic Energy Commission.

      136 Schaetzl, R. J. (2013). Catenas and soils. In J. Shroder (Ed. in Chief), Pope, G.A. (Ed.), Treatise on geomorphology: Vol. 4. Weathering and soils geomorphology (pp. 145–158). San Diego, CA: Academic Press.

      137 Shaw, C. F. (1930). Potent factors in soil formation. Ecology, 11, 239–245.

      138 Shepard, C., Schaap, M. G, Pelletier, J. D., & Rasmussen, C. (2017). A probabilistic approach to quantifying soil property change through time integration of energy and mass input. SOIL, 3, 67–82.

      139 Simonson, R. W. (1959). Outline of a generalized theory of soil genesis. Soil Science Society of America Proceedings, 23, 152–156.

      140 Simonson, R. W. (1968). Concept of soil. Advances in Agronomy 20, 1–47.

      141 Sommer, M. (2006). Influence of soil pattern on matter transport in and from terrestrial biogeosystems: A new concept for landscape pedology. Geoderma, 133, 107–123.

      142 Sommer, M., & Schlichting, E. (1997). Archetypes of catenas in respect to matter a concept for structuring and grouping catenas. Geoderma, 76, 1–33.

      143 Stephens, C. G. (1947). Functional synthesis in pedogenesis. Transactions of the Royal Society of South Australia, 71, 168–181.

      144 Stockmann, U., Minasny, B., & McBratney, A. B. (2011). Quantifying processes of pedogenesis. Advances in Agronomy, 113, 1–74.

      145 Suess, E. (1875). Die Entstehung der Alpen. Wien: Wilhelm Braunmüller.

      146 Suess, E. (1883–1909). Das Antlitz der Erde, 5 vols. Wien: Gustav Freytag.

      147 Tandarich, J. P., Darmody, R. G., Follmer, L. R., & Johnson, D. L. (2002). Historical development of soil and weathering profile concepts from Europe to the United States of America. Soil Science Society of America Journal, 66, 335–346.

      148 Targulian, V. O., & Sokolova, T. A. (1996). Soil as a bio‐abiotic natural system: A reactor, memory and regulator of biospheric interactions. Eurasian Soil Science, 29, 34–47.

      149 Temme, A.J.A.M., & Vanwalleghem, T. (2016). LORICA – A new model for linking landscape and soil profile evolution: Development and sensitivity analysis. Computers & Geosciences, 90, 131–143.

      150 Troeh, F. R. (1964). Landform parameters correlated to soil drainage. Soil Science Society of America Proceedings, 28, 808–812.

      151 Vanwalleghem, T., Stockmann, U., Minasny, B., & McBratney, A. B. (2013). A quantitative model for integrating landscape evolution and soil formation. Journal of Geophysical Research: Earth Surface, 118, 331–347.

      152 Verboom, W. H., & Pate, J. S. (2013). Exploring the biological dimension to pedogenesis with emphasis on the ecosystems, soils and landscapes of southwestern Australia. Geoderma, 211–212, 154–183.

      153 Vernadsky, V. I. (1926). Biosfera. Leningrad: Nauchoe Khimikoteknicheskoe Izdatelstvo.

      154 Vernadsky, V. I. (1929). La biosphère. Paris: Félix Alcan.

      155 Vernadsky, V. I. (1998). The biosphere, translated by David B. Langmuir. Heidelberg: Springer‐Verlag.

      156 Volobuyev, V. R. (1963). Ecology of soils. Academy of Sciences of the Azerbaidzan SSR. Institute of Soil Science and Agrochemistry. Israel Program for Scientific Translations, Jerusalem (Translated into English by A. Gourevich, 1964).

      157 Vreeken, W. J. (1973). Soil variability in small loess watersheds: Clay and organic matter content. Catena, 2, 321–336.

      158 Wackett, A. A., Yoo, K., Amundson, R., Heimsath, A. M., & Jelinski, N. A. (2018). Climate controls on coupled processes of chemical weathering, bioturbation, and sediment transport across hillslopes. Earth Surface Processes and Landforms, 43, 1575–1590 doi: 10.1002/esp.4337

      159 Wilde, S. A. (1946). Forest soils and forest growth. Waltham, MA: Chronica Botanica.

      160 Wilding, L. P., & Lin, H. (2006). Advancing the frontiers of soil science towards a geoscience. Geoderma, 131, 257–274.

      161 Willgoose, G. (2018). Principles of soilscape and landscape evolution. Cambridge: Cambridge University Press.

      162 Yaalon, D. H. (1975). Conceptual models in pedogenesis: Can soil‐forming functions be solved? Geoderma, 14, 189–205.

      163 Yaalon, D. H., & Yaron, B. (1966). Framework for man‐made soil changes: An outline of metapedogenesis. Soil Science, 102, 272–277.

      164 Yoo, K., Amundson, R., Heimsath, A. M., Dietrich, W. E., & Brimhall, G. H. (2007). Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes. Journal of Geophysical Research: Earth Surface,

Скачать книгу