Halogen Bonding in Solution. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Halogen Bonding in Solution - Группа авторов страница 22

Halogen Bonding in Solution - Группа авторов

Скачать книгу

Acceptor copolymers P5 and P6 were obtained by RAFT polymerization of BMA with methyl methacrylate (MAA) and subsequent treatment with TBAOH.

      Source: From Tepper et al. [187]. © 2017 John Wiley & Sons

      .

      1.5.5 Materials Conclusion

      Despite the early stage of development, materials scientists have used the halogen bond to construct a diverse range of LCs, ionic liquids, self‐healing polymers, and macroscopic self‐assembled gels. These initial materials provide perspective for the detailed discussions of solution‐based halogen bonding found in subsequent chapters. However, halogen bond‐based materials are still largely inspired and derived from hydrogen bond‐based materials. Surely, combining the ingenuity of the chemist with the directionality, tunability, solvent resistance, and lipophilicity of the halogen bond will produce unique materials for a variety of exciting applications. Future studies will improve the properties of halogen bonding materials and will be used to gain a greater understanding of the noncovalent interactions available to the chemist.

      The rise of these noncovalent forces has expanded the supramolecular landscape. As such, readers should continue to expect comparative investigations on how the halogen bond “stacks up” against other noncovalent interactions – some of which will be discussed in later chapters. These and other fundamental studies will continue to refine our understanding of the halogen bond. As the field advances, enriched understanding and computational models will lead to improved molecular designs – the prospects of which are vast. The intent of this introduction has been to provide a deeper understanding of the halogen bond that can be used to contextualize the solution discussions found in later chapters. The following chapters highlight fundamental and functional studies of the halogen bond in solution.

      O.B.B., D.A.D., and E.A.J. are thankful for the support from National Science Foundation (NSF) CAREER CHE‐1555324. O.B.B., D.A.D., and E.A.J. are thankful for X‐ray core facility support by the Center for Biomolecular Structure and Dynamics CoBRE (NIH NIGMS grant P20GM103546) and the University of Montana (UM).

      1 1 Guo, N., Maurice, R., Teze, D. et al. (2018). Nat. Chem. 10: 1–7.

      2 2 Desiraju, G.R., Ho, P.S., Kloo, L. et al. (2013). Pure Appl. Chem. 85: 1711–1713.

      3 3 Von, P., Schleyer, R., and West, R. (1959). J. Am. Chem. Soc. 81: 3164–3165.

      4 4 Ramasubbu, N., Parthasarathy, R., and Murray‐Rust, P. (1986). J. Am. Chem. Soc. 108: 4308–4314.

      5 5 Brinck, T., Murray, J.S., and Politzer, P. (1992). Int. J. Quantum Chem. 44: 57–64.

      6 6 Murray, J.S., Paulsen, K., and Politzer, P. (1994). Proc. Indian Acad. Sci. 106: 267–275.

      7 7 Cavallo, G., Metrangolo, P., Milani, R. et al. (2016). Chem. Rev. 116: 2478–2601.

      8 8 Clark, T., Hennemann, M., Murray, J.S., and Politzer, P. (2007). J. Mol. Model. 13: 291–296.

      9 9 Alvarez, S. (2013). Dalton Trans. 42: 8617.

      10 10 Shannon, R.D. (1976). Acta Crystallogr. Sect. A 32: 751–767.

      11 11 Metrangolo, P., Meyer, F., Pilati, T. et al. (2008). Angew. Chem. Int. Ed. 47: 6114–6127.

      12 12 Priimagi, A., Cavallo, G., Metrangolo, P., and Resnati, G. (2013). Acc. Chem. Res. 46: 2686–2695.

      13 13 Riel, A.M.S., Jessop, M.J., Decato, D.A. et al. (2017). Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 73: 203–209.

      14 14 Riel, A.M.S., Rowe, R.K., Ho, E.N. et al. (2019). Acc. Chem. Res. 52: 2870–2880.

      15 15 Riel, A.M.S., Decato, D.A., Sun, J. et al. (2018). Chem. Sci. 9: 5828–5836.

      16 16 Carlsson, A.‐C.C., Scholfield, M.R., Rowe, R.K. et al. (2018). Biochemistry 57: 4135–4147.

      17 17 Bent, H.A. (1968). Chem. Rev. 68: 587–648.

      18 18 Lu, Y.X., Zou, J.W., Yu, Q.S. et al. (2007). Chem. Phys. Lett. 449: 6–10.

      19 19 Laurence, C., Graton, J., and Gal, J.F. (2011). J. Chem. Educ. 88: 1651–1657.

      20 20 Karan, N.K. and Arunan, E. (2004). J. Mol. Struct. 688: 203–205.

      21 21 Raghavendra, B. and Arunan, E. (2007). J. Phys. Chem. A 111: 9699–9706.

      22 22 Urinda, S., Kundu, D., and Majee, A. (2009). Heteroat. Chem. 20: 232–234.

      23 23 Imakubo, T., Tajima, N., Shirahata, T. et al. (2003). Synth. Met. 135–136: 601–602.

      24 24 Laurence, C., Graton, J., Berthelot, M., and El Ghomari, M.J. (2011). Chem. Eur. J. 17: 10431–10444.

      25 25 Lieffrig, J., Jeannin, O., Frąckowiak, A. et al. (2013). Chem. ‐Eur. J. 19: 14804–14813.

      26 26 Cametti, M., Raatikainen, K., Metrangolo, P. et al. (2012). Org. Biomol. Chem. 10: 1329–1333.

      27 27 Gilday, L.C., Lang, T., Caballero, A. et al. (2013). Angew. Chem. Int. Ed. 52: 4356–4360.

      28 28 Zapata, F., Caballero, A., White, N.G. et al. (2012). J. Am. Chem. Soc. 134: 11533–11541.

      29 29 Walter, S.M., Kniep, F., Rout, L. et al. (2012). J. Am. Chem. Soc. 134: 8507–8512.

      30 30 Kassl, C.J., Swenson, D.C., and Pigge, F.C. (2015). Cryst. Growth Des. 15: 4571–4580.

      31 31 Sabater, P., Zapata, F., Caballero, A. et al. (2016). J. Org. Chem. 81: 7448–7458.

      32 32 Carlsson, A.‐C.C., Gräfenstein, J., Budnjo, A. et al. (2012). J. Am. Chem. Soc. 134: 5706–5715.

      33 33 Carlsson, A.‐C.C., Gräfenstein, J., Laurila, J.L. et al. (2012). Chem. Commun. 48: 1458–1460.

      34 34 Carlsson, A.‐C.C., Uhrbom, M., Karim, A. et al. (2013). CrystEngComm 15: 3087.

      35 35 Rosenfeld, L. (2000). J. Chem. Educ. 77: 984.

      36 36 Colin, M. (1814). Ann. Chim. 91: 252–272.

      37 37 Guthrie, F. (1863). J. Chem. Soc. 16: 239–244.

      38 38 Remsen, I. and Norris, J.F. (1896). Am. Chem. J. 18: 90–95.

      39 39

Скачать книгу