Halogen Bonding in Solution. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Halogen Bonding in Solution - Группа авторов страница 24
102 102 Boubekeur, K., Syssa‐Magalé, J.‐L., Palvadeau, P., and Schöllhorn, B. (2006). Tetrahedron Lett. 47: 1249–1252.
103 103 Clemente‐Juan, J.M., Coronado, E., Mínguez Espallargas, G. et al. (2010). CrystEngComm 12: 2339.
104 104 Troff, R.W., Mäkelä, T., Topić, F. et al. (2013). Eur. J. Org. Chem. 2013: 1617–1637.
105 105 Makhotkina, O., Lieffrig, J., Jeannin, O. et al. (2015). Cryst. Growth Des. 15: 3464–3473.
106 106 Raatikainen, K. and Rissanen, K. (2011). CrystEngComm 13: 6972.
107 107 Mavračić, J., Cinčić, D., and Kaitner, B. (2016). CrystEngComm 18: 3343–3346.
108 108 Stilinović, V., Horvat, G., Hrenar, T. et al. (2017). Chem. Eur. J. 23: 5244–5257.
109 109 Eraković, M., Cinčić, D., Molčanov, K., and Stilinović, V. (2019). Angew. Chem. Int. Ed. 58: 15702–15706.
110 110 Caronna, T., Liantonio, R., Logothetis, T.A. et al. (2004). J. Am. Chem. Soc. 126: 4500–4501.
111 111 Sinnwell, M.A., Blad, J.N., Thomas, L.R., and MacGillivray, L.R. (2018). IUCrJ 5: 491–496.
112 112 Sinnwell, M.A. and MacGillivray, L.R. (2016). Angew. Chem. Int. Ed. 55: 3477–3480.
113 113 DeCicco, R.C., Luo, L., and Goroff, N.S. (2019). Acc. Chem. Res. 52: 2080–2089.
114 114 Cinčić, D., Friščić, T., and Jones, W. (2008). J. Am. Chem. Soc. 130: 7524–7525.
115 115 Cavallo, G., Metrangolo, P., Pilati, T. et al. (2010). Chem. Soc. Rev. 39: 3772–3783.
116 116 Metrangolo, P., Pilati, T., Terraneo, G. et al. (2009). CrystEngComm 11: 1187–1196.
117 117 Xu, Y., Gabidullin, B., and Bryce, D.L. (2019). J. Phys. Chem. A 123: 6194–6209.
118 118 Szell, P.M.J., Grébert, L., and Bryce, D.L. (2019). Angew. Chem. Int. Ed. 58: 13479–13485.
119 119 Shankar, S., Chovnik, O., Shimon, L.J.W. et al. (2018). Cryst. Growth Des. 18: 1967–1977.
120 120 Syssa‐Magalé, J.‐L., Boubekeur, K., Leroy, J. et al. (2014). CrystEngComm 16: 10380–10384.
121 121 Titi, H.M., Nandi, G., Tripuramallu, B.K., and Goldberg, I. (2015). Cryst. Growth Des. 15: 3063–3075.
122 122 Catalano, L., Perez‐Estrada, S., Wang, H.‐H. et al. (2017). J. Am. Chem. Soc. 139: 843–848.
123 123 Simonov, S., Zorina, L., Wzietek, P. et al. (2018). Nano Lett. 18: 3780–3784.
124 124 Müller, M., Albrecht, M., Gossen, V. et al. (2010). Chem. Eur. J. 16: 12446–12453.
125 125 García, M.D., Martí‐Rujas, J., Metrangolo, P. et al. (2011). CrystEngComm 13: 4411.
126 126 Peuronen, A., Rinta, H., and Lahtinen, M. (2015). CrystEngComm 17: 1736–1740.
127 127 Szell, P.M.J., Gabriel, S.A., Caron‐Poulin, E. et al. (2018). Cryst. Growth Des. 18: 6227–6238.
128 128 Widner, D.L., Knauf, Q.R., Merucci, M.T. et al. (2014). J. Org. Chem. 79: 6269–6278.
129 129 Politzer, P., Lane, P., Concha, M.C. et al. (2007). J. Mol. Model. 13: 305–311.
130 130 Politzer, P., Murray, J.S., and Clark, T. (2013). Phys. Chem. Chem. Phys. 15: 11178.
131 131 Frontera, A., Gamez, P., Mascal, M. et al. (2011). Angew. Chem. Int. Ed. 50: 9564–9583.
132 132 Wolters, L.P., Schyman, P., Pavan, M.J. et al. (2014). Wiley Interdiscip. Rev. Comput. Mol. Sci. 4: 523–540.
133 133 Kolář, M.H. and Hobza, P. (2016). Chem. Rev. 116: 5155–5187.
134 134 Sedlak, R., Kolář, M.H., and Hobza, P. (2015). J. Chem. Theor. Comput. 11: 4727–4732.
135 135 Nyburg, S.C. and Faerman, C.H. (1985). Acta Crystallogr. Sect. B Struct. Sci. 41: 274–279.
136 136 Hathwar, V.R. and Guru Row, T.N. (2011). Cryst. Growth Des. 11: 1338–1346.
137 137 Chopra, D. (2012). J. Phys. Chem. A 116: 9791–9801.
138 138 Murray, J.S. and Politzer, P. (2011). Wiley Interdiscip. Rev. Comput. Mol. Sci. 1: 153–163.
139 139 Riley, K.E., Murray, J.S., Fanfrlík, J. et al. (2011). J. Mol. Model. 17: 3309–3318.
140 140 Politzer, P. and Murray, J.S. (2017). Crystals 7: 212.
141 141 Brinck, T., Murray, J.S., and Politzer, P. (1993). Int. J. Quantum Chem. 48: 73–88.
142 142 Murray, J.S., Macaveiu, L., and Politzer, P. (2014). J. Comput. Sci. 5: 590–596.
143 143 Riley, K.E., Murray, J.S., Politzer, P. et al. (2009). J. Chem. Theor. Comput. 5: 155–163.
144 144 Aakeröy, C.B., Wijethunga, T.K., and Desper, J. (2014). J. Mol. Struct. 1072: 20–27.
145 145 Sarwar, M.G., Dragisic, B., Salsberg, L.J. et al. (2010). J. Am. Chem. Soc. 132: 1646–1653.
146 146 Beale, T.M., Chudzinski, M.G., Sarwar, M.G., and Taylor, M.S. (2013). Chem. Soc. Rev. 42: 1667–1680.
147 147 Huber, S.M., Jimenez‐Izal, E., Ugalde, J.M., and Infante, I. (2012). Chem. Commun. 48: 7708.
148 148 Palusiak, M. (2010). J. Mol. Struct.‐THEOCHEM 945: 89–92.
149 149 Wolters, L.P. and Bickelhaupt, F.M. (2012). ChemistryOpen 1: 96–105.
150 150 Alkorta, I., Rozas, I., and Elguero, J. (1998). J. Phys. Chem. A 102: 9278–9285.
151 151 Rosokha, S.V., Stern, C.L., and Ritzert, J.T. (2013). Chem. Eur. J. 19: 8774–8788.
152 152 Rosokha, S.V., Stern, C.L., Swartz, A., and Stewart, R. (2014). Phys. Chem. Chem. Phys. 16: 12968–12979.
153 153 Riley, K.E. and Hobza, P. (2013). Phys. Chem. Chem. Phys. 15: 17742.
154 154 Eskandari, K. and Zariny, H. (2010). Chem. Phys. Lett. 492: 9–13.
155 155 Riley, K.E. and Hobza, P. (2008). J. Chem. Theor. Comput. 4: 232–242.
156 156 Jeziorski, B., Moszynski, R., and Szalewicz, K. (1994). Chem. Rev. 94: 1887–1930.
157 157 Williams, H.L. and Chabalowski, C.F. (2001). J. Phys. Chem. A 105: 646–659.
158 158 Valadares, N.F., Salum, L.B., Polikarpov, I. et al. (2009). J. Chem. Inf. Model. 49: 2606–2616.
159 159 Auffinger, P., Hays, F.A., Westhof, E., and Ho, P.S. (2004). Proc. Natl. Acad. Sci. USA 101: 16789–16794.
160 160 Xu, Z., Yang, Z., Liu, Y. et al. (2014). J. Chem. Inf. Model. 54: 69–78.
161 161 Ford, M.C.