Methodologies in Amine Synthesis. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Methodologies in Amine Synthesis - Группа авторов страница 20

Methodologies in Amine Synthesis - Группа авторов

Скачать книгу

J.Q. (2015). Angewandte Chemie International Edition 54: 6545–6549.

      36 36 Shang, M., Zeng, S.‐H., Sun, S.‐Z. et al. (2013). Organic Letters 15: 5286–5289.

      37 37 Dong, Z. and Dong, G. (2013). Journal of the American Chemical Society 135: 18350–18353.

      38 38 Huehls, C.B., Lin, A., and Yang, J. (2014). Organic Letters 16: 3620–3623.

      39 39 Dequirez, G., Pons, V., and Dauban, P. (2012). Angewandte Chemie (International Ed. in English) 51: 7384–7395.

      40 40 Shimbayashi, T., Sasakura, K., Eguchi, A. et al. (2019). Chemistry (Easton). 25: 3156–3180.

      41 41 Starkov, P., Jamison, T.F., and Marek, I. (2015). Chemistry (Easton). 21: 5278–5300.

      42 42 Kwart, H. and Khan, A.A. (1967). Journal of the American Chemical Society 89: 1951–1953.

      43 43 Jat, J.L., Paudyal, M.P., Gao, H. et al. (2014). Science 343: 61–65.

      44 44 Nicolaou, K.C., Rhoades, D., Wang, Y. et al. (2017). Journal of the American Chemical Society 139: 7318–7334.

      45 45 Ma, Z., Zhou, Z., and Kürti, L. (2017). Angewandte Chemie, International Edition 56: 9886–9890.

      46 46 Strom, A.E. and Hartwig, J.F.J. (2013). Organic Chemistry 78: 8909–8914.

      47 47 Paudyal, M.P., Adebesin, A.M., Burt, S.R. et al. (2016). Science 353: 1144.

      48 48 Zhu, C., Li, G., Ess, D.H. et al. (2012). Journal of the American Chemical Society 134: 18253–18256.

      49 49 Gao, H., Zhou, Z., Kwon, D.‐H. et al. (2017). Nature Chemistry 9: 681–688.

      50 50 Behnke, N.E., Kielawa, R., Kwon, D.‐H. et al. (2018). Organic Letters 20: 8064–8068.

      51 51 Farndon, J.J., Young, T.A., and Bower, J.F. (2018). Journal of the American Chemical Society 140: 17846–17850.

      52 52 Zhou, Z., Cheng, Q.‐Q., and Kürti, L. (2019). Journal of the American Chemical Society 141: 2242–2246.

      53 53 Cheng, Q.‐Q., Zhou, Z., Jiang, H. et al. (2020). Nature Catalysis 3: 386–392.

       Ji Hye Kim, Elizabeth M. Dauncey, and Daniele Leonori

       University of Manchester, Department of Chemistry, Oxford Road, Manchester, M13 9PL, UK

      Nitrogen‐containing molecules represent a central class of compounds with applications spanning therapeutic agents, agrochemicals, food additives, and materials. Chemical methodologies able to streamline the synthesis and modification of these molecules underpin the development of high‐value products central to the well‐being of our society [1].

Chemical reaction depicts the radical transposition processes using nitrogen-radicals.

      Mechanistically, 1,5‐HAT reactions of nitrogen radicals are strongly polarity‐ and enthalpy‐driven processes with stringent geometrical constraints. This means that three main factors need to be considered when approaching the design of these transformations.

       Geometrical factors. The 1,5‐HAT process goes through a six‐membered ring transition state, which, depending on the 3D structure of the nitrogen radical, might favor or thwart reactivity [8]. This is seen in a classical example of HLF reactivity for the assembly of a complex‐bridged azabicyclic system (Scheme 2.3a) [9]. Although the intermediate N‐chloroamine 6 contains four different sites with 1,5‐relationship to

Скачать книгу