Евклидово окно. История геометрии от параллельных прямых до гиперпространства. Леонард Млодинов

Чтение книги онлайн.

Читать онлайн книгу Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов страница 11

Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов

Скачать книгу

xmlns:fb="http://www.gribuser.ru/xml/fictionbook/2.0" xmlns:fo="http://www.w3.org/1999/XSL/Format" xlink:href="#n_48" type="note">[48] заслуживает детективного романа не хуже «Мальтийского сокола»[49]. Во-первых, это не книга в буквальном смысле, но собрание из тринадцати свитков папируса. Ни один оригинал не сохранился – они передавались из поколения в поколение чередой переизданий, а в Темные века чуть было не исчезли совсем. Первые четыре свитка Евклидова труда в любом случае – не те самые «Начала»: ученый по имени Гиппократ (не врач-тезка) написал «Начала» где-то в 400-х годах до н. э., и они-то, судя по всему, являются содержимым этих первых свитков, хотя оно никак не атрибутировано. Евклид никак не претендовал на авторство этих теорем. Свою задачу он видел в систематизации греческого понимания геометрии. Он стал архитектором первого осмысленного отчета о природе двухмерного пространства, созданного одной лишь силой мысли, без всяких отсылок к физическому миру.

      Важнейший вклад Евклидовых «Начал» сводился к передовому логическому методу: во-первых, Евклид объяснил все термины введением точных определений, гарантирующих понимание всех слов и символов. Во-вторых, он прояснил все понятия, предложив для этого прозрачные аксиомы или постулаты (эти два термина взаимозаменяемы), и отказался от применения неустановленных выводов или допущений. И наконец, он выводил логические следствия всей системы лишь с использованием правил логики, примененной к аксиомам и ранее доказанным теоремам.

      Вот зануда и привереда, а? Зачем уж так настаивать на доказательстве малейшего утверждения? Математика – вертикальное сооружение, которое, в отличие от архитектурной постройки, рухнет, если хоть один математический кирпичик окажется битым. Допусти в системе невиннейшую погрешность – и пиши пропало, в ней уже ничему нельзя доверять. По сути, теорема логики утверждает:[50] если в систему вкралась хоть одна ложная теорема – неважно, о чем она, – этого будет достаточно для доказательства, что 1 = 2. Говорят, однажды некий скептик припер к стенке логика Бертрана Расселла, желая возразить против этой уничтожающей теоремы (хотя в итоге говорил об обратном). «Вот что, – рявкнул усомнившийся, – допустим, один равно два, докажите, что вы – Папа Римский». Расселл, по свидетельствам, задумался на миг, после чего ответил: «Папа и я – двое, следовательно, Папа и я – одно».

      Доказательство каждого утверждения означает, среди прочего, еще и то, что интуицию, хоть она и ценный поводырь, следует проверять на пороге доказательства. Фраза «это интуитивно понятно» – неподходящий шаг для доказательства. Слишком уж мы падки на всякую очевидность. Представим, что мы разматываем клубок шерсти вдоль экватора Земли, все 25 000 миль. А теперь представим то же самое, но в футе над экватором. Насколько больше ниток нам потребуется для этого? На 500 футов больше? Или на 5000? Упростим задачу. Представим теперь, что раскатываем один клубок вдоль поверхности Солнца, а второй – в футе над его поверхностью. К какому клубку нужно добавить больше ниток – к тому, что мы разматываем в футе от Земли или в футе от Солнца? Большинству из нас интуиция подсказывает «вокруг Солнца», однако ответ на

Скачать книгу


<p>49</p>

«Мальтийский сокол» (1930) – детектив-нуар американского писателя Сэмюэла Дэшилла Хэммета (1894–1961). – Прим. пер.

<p>50</p>

Kline, стр. 1205.