Евклидово окно. История геометрии от параллельных прямых до гиперпространства. Леонард Млодинов
Чтение книги онлайн.
Читать онлайн книгу Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов страница 13
1. Равные одному и тому же равны и между собой.
2. И если к равным прибавляются равные, то и целые будут равны.
3. И если от равных отнимаются равные, то остатки будут равны.
4. И совмещающиеся друг с другом равны между собой.
5. И целое больше части[57].
Если же отложить в сторону эти предварительные замечания, геометрическая суть евклидовой геометрии покоится на пяти постулатах. Первые четыре просты и могут быть сформулированы не без изящества. В современных терминах они звучат так:
Евклидов постулат параллельности
1. От всякой точки до всякой точки можно провести прямую.
2. Ограниченную прямую можно непрерывно продолжать по прямой.
3. Из всякого центра всяким раствором может быть описан круг.
4. Все прямые углы равны между собой.
Постулаты 1 и 2 вполне совпадают, похоже, с нашим житейским опытом. По ощущениям – да, мы понимаем, как нарисовать отрезок между двумя точками, и никогда не утыкались ни в какие препятствия в конце пространства, которые не дали бы нам продолжить прямую. Третий постулат несколько мудренее: он предполагает, что расстояния в пространстве заданы так, что длина отрезка при перемещении его с места на место не меняется, где бы ни рисовали круг. Четвертый постулат на вид прост и очевиден. Чтобы постичь его тонкости, вспомним определение прямого угла: это возникающий при пересечении двух прямых угол, равный всем остальным возникшим. Мы такое видели много раз: одна линия перпендикулярна другой, и все углы со всех сторон равны 90°. Но само определение этого не утверждает – оно даже не говорит нам о том, что значение этих углов всегда одно и то же. Можем вообразить мир, в котором эти углы будут равны 90°, если линии пересекаются в некой заданной точке, а если в какой-нибудь другой, то углы получатся другие. Постулат, утверждающий, что все прямые углы равны между собой, гарантирует, что такого быть не может. Это означает в некотором смысле, что линия выглядит одинаково по всей длине – своего рода условие прямизны.
Пятый же постулат Евклида, называемый постулатом параллельности, не настолько очевиден – в отличие от остальных. Это личное изобретение Евклида, а не часть великого корпуса знаний, который он документировал. Но ему, со всей очевидностью, собственная формулировка не нравилась – он изо всех сил старался избегать ее. Позднейшие математики ее тоже невзлюбили: она была недостаточно проста для постулата и требовала доказательства, как
57
Здесь и далее – пер. с греч. Д. Д. Мордухай-Болтовского. –