Евклидово окно. История геометрии от параллельных прямых до гиперпространства. Леонард Млодинов
Чтение книги онлайн.
Читать онлайн книгу Евклидово окно. История геометрии от параллельных прямых до гиперпространства - Леонард Млодинов страница 16
Не исключено, что о причинах средневекового интеллектуального заката написано больше слов, чем было в свитках Александрийской библиотеки. Простого ответа нет. Династия Птолемеев пришла в упадок за два века до рождения Христа. Птолемей XII передал царствование сыну и дочери, унаследовавшим власть после смерти правителя в 51 году до н. э. В 49 году до н. э. его сын устроил заговор против сестрицы и прибрал всю власть к рукам. Сестрица же и сама была не промах – нашла способ добраться до самого римского императора и попросить о помощи (в те времена, хоть формально и не завися от Рима, империя Птолемеев уже находилась под римским господством). С этого начался роман Клеопатры с Юлием Цезарем. В итоге Клеопатра заявила, что собирается родить Цезарю сына. Римский император – мощный союзник египтянам, однако этот альянс был обречен – вместе с самим Цезарем. После того, как двадцать три римских сенатора напали на своего императора и закололи его во время Мартовских ид 44 года до н. э., внучатый племянник Цезаря, Октавиан, подчинил Риму и Александрию, и Египет.
Поскольку Рим завоевал Грецию, римляне получили доступ к интеллектуальному достоянию греков. Наследники греческих традиций покорили бо́льшую часть мира и столкнулись со многими техническими и инженерными трудностями, однако их императоры не поддерживали математику так, как это делали Александр или Птолемей Египетский, и цивилизация их не произвела на свет ни одного математического гения масштабов Пифагора, Евклида или Архимеда. За 1100 лет их правления – с 750 года до н. э. – история не помнит ни одной доказанной римлянами теоремы и ни одного математика. Для греков определение расстояний было математической задачей с участием равных и подобных треугольников, параллакса и геометрии. В римских учебниках[68] в словесно сформулированной задаче от читателя требовалось найти метод определения ширины реки, когда другой берег занят врагом. «Враг» – понятие, чья полезность в математике довольно спорна, зато оно – ключевое для римской манеры мышления.
В абстрактной математике римляне не разбирались – и гордились этим. Цицерон сказал: «Греки держали геометров в высочайшем почете. Потому и более всего развили они математику. Но мы положили предел этому искусству его пользой в измерении и счете». Вероятно, о римлянах можно было бы сказать: «Римляне держали воинов в высочайшем почете. Потому более всего развили они насилие и мародерство. Но мы положили предел этому искусству его пользой в покорении
68
Kline,