Scatterbrain. Henning Beck
Чтение книги онлайн.
Читать онлайн книгу Scatterbrain - Henning Beck страница 11
The memory chapel
AT THIS POINT, I would like to appeal to your memory of the previous chapter (this time without any ploys or gimmicks). Namely, that information and our brain’s memory content are not static but rather malleable components. We don’t go around recording our minute-by-minute experience of the world with a video camera and then save the film for the rest of our lives. It is much more likely that we are continuously tinkering with our memory, which is itself a dynamic construct.
Memory is dynamic because it can change quickly. Let me return one last time to the orchestra comparison from the last chapter. In the same way that a piece of music can be varied by how it is played by an orchestra, a piece of information in the brain can also be changed. In addition, an orchestra might have fewer or more musicians playing (or neurons, in the case of the brain), in which case the basic concept of the piece of music (the information) remains the same, but the sound would change.
Our memory is a construct because we do not, strictly speaking, call up a single memory when we remember something. Instead, we recreate it new each time, the way that an orchestra plays the same piece of music again but always somewhat differently than before. Each concert—each recollection—is a unique experience. Once our neurons have stopped activating the corresponding memory, the specific memory is gone though it is still saved in our memory. In an orchestra, this memory would be like the ability of orchestral musicians to listen to each other, to play their instruments at precisely the right moment, and thereby be attuned together. In the brain, information is stored among the neural contact spots so that it can be triggered and recreated again in the future. A memory is thus the ability of the neural network to generate a state of activity (corresponding to a piece of information, a thought, or a memory).
In order for an orchestra to play a new piece of music, or for a neural network to save a new piece of information, three steps must be taken. First, the musicians play the new song for the first time, then they practice it, thereby improving their coordination with each other so that they can finally be ready to play it at a concert. Of course, it is important that the orchestra plays the notes with as few mistakes as possible. And this is where a brain is different from an orchestra. A brain doesn’t play the order of notes as they are written on the score but instead alters the melody a little bit each time it practices. The brain’s goal is not to play (or to activate) something that has been predefined because there is no conductor. It is much more important that the brain plays in such a way that the song flows and that it provides a coherent overall feel while at the same time saving as much cell energy as possible. What this means, however, is that the information changes over time, and the more often it is worked on, the more it will change. Our memory is thus contestable at every step: when it records, when it consolidates, and when it recalls past memories.
The vulnerability of memory
IT IS POSSIBLE for a memory to be altered right from the moment when we are learning and saving a piece of information. This is often due to the fact that information is more easily processed when it can take up as many areas of the brain as possible. In order to better solidify a memory, you will often come up with a few pieces of additional information for the brain. It’s like the technique that memory experts recommend, of imagining images or stories to correspond with words or phrases in order not to forget them. Something similar occurs automatically in our brain—and sometimes it goes a little too far.
If you want to research human memory errors under standardized scientific conditions, you somehow have to create these errors artificially. One tried and tested method of choice is a test named after its developers, Deese-Roediger-McDermott, or DRM for short. Test subjects are first shown a selection of terms, which they are asked to memorize quickly. For example, read the following list two or three times thoroughly:
Truck, street, drive, key, garage, SUV, freeway, accelerate, gas station, bus, station wagon, steering wheel, DMV, motor, pass
DRM researchers do this with several lists and then give the test subjects time to think or else distract them with a different focused exercise. In order to do this with you, I will simply continue writing this sentence, adding in an unnecessary clause here, and putting something completely unimportant (irrelevant) into parenthesis over there, all in order to move you a bit further away from the list. Don’t look back! Please move on to the top of the next page!
Your task: which of the following word(s) did you see in the previous list?
Steering wheel, car, seat, motorcycle, inspection
Alternatively, I could ask you to write down which words you remember and then compare the lists to see which words match and which words you may have added. By now you have realized that this is a simple variation of the puzzle that I gave you at the start of the chapter. Interestingly, by setting up a carefully devised experiment (one that is not as limited as I necessarily am in the confines of this book), it is possible for researchers to get 80 percent of test subjects to claim that they “recognize” false words, or to put it another way, to facilitate the production of false memories.5
The reason behind this weakness of memory lies in the manner in which information is integrated into the brain from the very beginning. When you read a word, you first receive it in the image-processing region of your brain, which is located in your neck area. However, in order to grasp the contents of the word, it must be semantically processed—that is, to relate the new word’s meaning to other words with similar meanings. This takes place in the frontal cortex, or more specifically, in the front and side area of your frontal lobe (for those who must know exactly: the ventrolateral prefrontal cortex). Studies show that both true and false memories are generated in an almost identical fashion. Although true memories do tend to show increased activity in the image processing region—since one is closer to the raw information from one’s surrounding environment—the further processing stages in the brain are more or less the same for false memories.6 Or, to put it another way, not only do we perceive a list of words, we shape the perceived truth. We endow it with a meaning and pack the concepts into a mental box.
In chapter 11, we will explore the consequences of excessive inside-the-box thinking or pigeonholing, but for now, allow me to make one remark: invented memories are created in the same way as true memories. Of course, false memories cannot boast the same level of “real” sensory experience, but they are nonetheless integrated into the exact same network. Once this has happened, even if only a single time, it’s too late. The brain can no longer distinguish the false memory from the true one. From that moment on, it doesn’t make any difference to the brain what is fantasy and what is reality. Or, to quote the neuroscience film classic The Matrix, “Your mind makes it real.” Regardless of whether or not the experience ever really took place. In principle, our memories live in a dream world of our own creation.
Before we slide down the rabbit hole of a fundamental philosophical-epistemological debate, let’s return to the brain’s process of memory formation. A process which is not only influenced by our habit of arranging new information in patterns and boxes but also by our emotions and by fellow human beings.
The emotional traps
We are not only prone to making mistakes when trying to recall lists of words; we also err when we need to put them into a social context.