Engineering Solutions for CO2 Conversion. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Engineering Solutions for CO2 Conversion - Группа авторов страница 11

Engineering Solutions for CO2 Conversion - Группа авторов

Скачать книгу

on CO2 emission reduction in power and industrial sectors. Carbon capture represents a contribution of 23% in the “Beyond 2 degrees scenario” (B2DS) modeled by the International Energy Agency (IEA)1 and has other interesting characteristics that increase its value beyond its cost: (i) easiness to retrofit current power plants or industrial facilities,2 (ii) simplicity to integrate that in the electricity grid and offer an interesting tool to cover the intermittency of renewables, (iii) ideal to cut down industrial process emissions that otherwise cannot suffer deep reductions, and (iv) current carbon budgets rely on negative emissions to compensate the use of fossil fuels [1]. Carbon capture combined with bioenergy (BECCS) can provide negative emissions at large scale in an immediate future.

      CO2 capture (also called CO2 sequestration or carbon capture) involves a group of technologies aiming to separate CO2 from other compounds released during the production of energy or industrial products, obtaining a CO2‐rich gas that can be stored or used for the obtention of valuable products. The main classification of CO2 capture technologies relies on where in the process the CO2 separation occurs. For the power sector, it can be divided into pre‐, oxy‐, and post‐combustion. For the industrial sector, the classification is similar, although their integration would be different. In addition, other new arrangements are emerging.

      1.2.1 Status of CO2 Capture Deployment

      In the power sector, the United States is leading the implementation deployment, although Europe has the highest CO2 capture capacity. The Boundary Dam project (Canada) and Petra Nova (USA) are pioneers in reaching commercial scale. Moreover, based on the successful results of the Boundary Dam project, a CO2 capture facility has been planned for the Shand power facility (Canada), incorporating not only learnings from the Boundary Dam but also enhanced thermal integration and tailored design. The results show a significant cost reduction [2]. Also in Canada, the Quest project completes the list of Canadian CCS projects in operation [3] and The National Energy Laboratory (NET) power project recently appeared in the United States as a potential significant reduction on CO2 capture costs [4].

      In the industrial sector, cement, steel, refining, chemicals, heavy oil, hydrogen, waste‐to‐energy, fertilizers, and natural gas have been identified by the Carbon Sequestration Leadership Forum (CSLF; https://www.cslforum.org) as the main intensive emitter industries. As it is highlighted, the Norcem Brevik plant [5, 6], LEILAC [7] (cement production), and Al Redayah (steel production) are on the way to start running carbon capture systems in industrial facilities at pilot and large scales.

      1.2.2 Pre‐combustion

      The most notable pre‐combustion project was the Kemper County IGCC plant in the United States, which stopped its operation in 2017.This demonstration facility would place this arrangement at high TRL, while other testing campaigns would reach up to a TRL of 6.

Schematic illustration of the pre-combustion capture AQ for power generation in IGCC.

      Source: Adapted from Jansen et al. [72].

      1.2.3 Oxyfuel

      In the oxyfuel process, the air is split into nitrogen and oxygen, generally using an air separation unit (ASU), for the combustion of fuel with nearly pure oxygen. The consequence is a higher flame temperature and a highly concentrated CO2 stream (60–75%, wet and might contain impurities and incondensable components) that can be further purified to meet the final use specifications. The CO2‐rich gas is typically recirculated to manage the unstable flame and its high temperature. Nowadays, the progress on oxyfuel combustion is focused on the reduction of air separation costs and the enhancement of process configuration to reduce capture costs. Further information can be found, for example, in Ref. [10]. Based on the current progress, the most advanced arrangements can be assessed as TRL 7.

      1.2.4 Post‐combustion

Schematic illustration of the process schematic of a simplified commercial scale natural gas Allam cycle.

      Source: Adapted from Allam et al. [4].

      1.2.4.1 Adsorption

      Adsorption refers to the uptake of CO2 molecules onto the surface of another material. Based on the nature of interactions, adsorption can be classified into two types: (i) physical adsorption and (ii) chemical adsorption. In physical adsorption, the molecules are physisorbed because of physical forces (dipole–dipole, electrostatic, apolar, hydrophobic

Скачать книгу