Engineering Solutions for CO2 Conversion. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Engineering Solutions for CO2 Conversion - Группа авторов страница 15

Engineering Solutions for CO2 Conversion - Группа авторов

Скачать книгу

capture technology. The hybrid processes can be classified into absorption‐based, adsorption‐based, membrane‐based, and cryogen‐based hybrid processes. The integration of membranes into the absorption process (such as in the membrane contractor arrangement), catalysis process, and cryogenic process has progressed over the past years. However, the majority of the results are based on simulations or small‐scale testing campaigns, and the real value of using two technologies is not clear [38].

      Within the range of emerging technologies, electrochemical separation has had a fast development over the past years and, potentially, will continue in this pathway. The following Section 1.2.5.1 will be focused on fuel cells because of the growing expectation on this electrochemical separation technology for its integration in power plants.

      1.2.5.1 Fuel Cells

Schematic illustration of the two main options for CO2 capture using fuel cells. (a) The FC oxidizes a fuel taking oxygen from air and later separating CO2 from the anode effluent. (b) The MCFC concentrates the CO2 in flue gas from a conventional power plant from the cathode inlet to the anode outlet, while also oxidizing a portion of additional fuel.

      Source: Adapted from [11].

      Fuel cells generally operate with an approach that is similar to the “oxyfuel” concept, oxidizing fuel with oxygen extracted from air while generating power and releasing concentrated effluents at the anode outlet (Figure 1.9). This kind of power cycles generally require an integration with custom‐tailored gas turbine cycles, often operating at unconventional turbine inlet temperatures and pressure ratios, either using natural gas as a fuel or coal through integrated gasification fuel cell (IGFC) concepts. Because most fuel is oxidized in the fuel cell to allow a high CO2 capture efficiency, the fuel cell (FC) generates the majority of the cycle power output. The alternative option offered by MCFCs is shown at the bottom of Figure 1.9, where the fuel cell can operate “draining” CO2 from the cathode inlet stream, receiving the flue gases of a conventional power plant. In this configuration, the fuel cell operates with a post‐combustion approach, although also oxidizing a minor portion of additional fuel with the same “oxyfuel” features discussed above.

      Currently, the main challenges for stationary fuel cells are cost and cell durability. For the IGFC system, the gas cleaning process adds another energy barrier to its power generation.

       1.2.5.1.1 Solid Oxide Fuel Cells (SOFCs)

      In the pre‐anode CO2 capture process, syngas is generated at high pressure through high pressure coal gasification or by reforming the natural gas available from a natural gas pipeline at high pressure. Similar to the above cases, the syngas can be optionally shifted using the WGS reaction, creating a stream of steam, H2, and CO2. Up to about 90% of the CO2 can then be recovered from the syngas (or shifted syngas) using absorption or adsorption technologies.

      The post‐anode CO2 capture has been extensively studied in SOFC IGCC and natural gas cycles. A simple IGFC system is similar to an IGCC system, but the gas turbine (GT) power island is replaced by a FC island. Some system configurations still have a gas or steam turbine to utilize the extra heat. “Post‐anode” CO2 capture can be applied via CO2 separation from H2O via H2O condensation (or via cooling, knockout, and additional drying) and can effectively result in a 100% CO2 removal. A separation system that uses condensation followed by a cascade of flash drums can be used to produce CO2 at high enough purity for pipeline transport at the SOFC anode exhaust pressure.

       1.2.5.1.2 Molten Carbonate Fuel Cells (MCFCs)

Скачать книгу