The Peripheral T-Cell Lymphomas. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу The Peripheral T-Cell Lymphomas - Группа авторов страница 35

The Peripheral T-Cell Lymphomas - Группа авторов

Скачать книгу

Clin Cancer Res 16 (14): 3648.

      30 30 Kalac, M., Scotto, L., Marchi, E. et al. (2011). HDAC inhibitors and decitabine are highly synergistic and associated with unique gene‐expression and epigenetic profiles in models of DLBCL. Blood 118 (20): 5506–5516.

      31 31 Jain, S., Jirau‐Serrano, X., Zullo, K.M. et al. (2015). Preclinical pharmacologic evaluation of pralatrexate and romidepsin confirms potent synergy of the combination in a murine model of human T‐cell lymphoma. Clin Cancer Res 21 (9): 2096.

      32 32 Marchi, E., Zullo, K.M., Amengual, J.E. et al. (2015). The combination of hypomethylating agents and histone deacetylase inhibitors produce marked synergy in preclinical models of T‐cell lymphoma. Br J Haematol 171 (2): 215–226.

      33 33 Zullo, K.M., Guo, Y., Cooke, L. et al. (2015). Aurora a kinase inhibition selectively synergizes with histone deacetylase inhibitor through cytokinesis failure in T‐cell lymphoma. Clin Cancer Res 21 (18): 4097–4109.

      34 34 Odejide, O., Weigert, O., Lane, A.A. et al. (2014). A targeted mutational landscape of angioimmunoblastic T‐cell lymphoma. Blood 123 (9): 1293–1296.

      35 35 Sakata‐Yanagimoto, M., Enami, T., Yoshida, K. et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.

      36 36 Couronné, L., Bastard, C., and Bernard, O.A. (2012). TET2 and DNMT3A mutations in human T‐cell lymphoma. N Engl J Med 366 (1): 95–96.

      37 37 He, Y.F., Li, B.Z., Li, Z. et al. (2011). Tet‐mediated formation of 5‐carboxylcytosine and its excision by TDG in mammalian DNA. Science 333 (6047): 1303–1307.

      38 38 Ito, S., Shen, L., Dai, Q. et al. (2011). Tet proteins can convert 5‐methylcytosine to 5‐formylcytosine and 5‐carboxylcytosine. Science 333 (6047): 1300–1303.

      39 39 Tahiliani, M., Koh, K.P., Shen, Y. et al. (2009). Conversion of 5‐methylcytosine to 5‐hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (5929): 930.

      40 40 Quivoron, C., Couronné, L., Della Valle, V. et al. (2011). TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20 (1): 25–38.

      41 41 Muto, H., Sakata‐Yanagimoto, M., Nagae, G. et al. (2014). Reduced TET2 function leads to T‐cell lymphoma with follicular helper T‐cell‐like features in mice. Blood Cancer J 4 (12): e264‐e.

      42 42 Lemonnier, F., Couronné, L., Parrens, M. et al. (2012). Recurrent TET2 mutations in peripheral T‐cell lymphomas correlate with TFH‐like features and adverse clinical parameters. Blood 120: 1466–1469.

      43 43 Nagata, Y., Kontani, K., Enami, T. et al. (2016). Variegated RHOA mutations in adult T‐cell leukemia/lymphoma. Blood 127 (5): 596–604.

      44 44 Gu, T., Lin, X., Cullen, S.M. et al. (2018). DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol 19 (1): 88.

      45 45 Cairns, R.A., Iqbal, J., Lemonnier, F. et al. (2012). IDH2 mutations are frequent in angioimmunoblastic T‐cell lymphoma. Blood 119 (8): 1901–1903.

      46 46 Dawlaty, M.M., Breiling, A., Le, T. et al. (2014). Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 29 (1): 102–111.

      47 47 Williams, K., Christensen, J., Pedersen, M.T. et al. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473 (7347): 343–348.

      48 48 Wu, H., D’Alessio, A.C., Ito, S. et al. (2011). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473 (7347): 389–393.

      49 49 Lemonnier, F., Poullot, E., Dupuy, A. et al. (2018). Loss of 5‐hydroxymethylcytosine is a frequent event in peripheral T‐cell lymphomas. Haematologica 103 (3): e115.

      50 50 Wang, C., McKeithan, T.W., Gong, Q. et al. (2015). IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T‐cell lymphoma. Blood 126 (15): 1741–1752.

      51 51 de Mel, S., Soon, S.G., Mok, Y. et al. (2018). The genomics and molecular biology of natural killer/T‐cell lymphoma: opportunities for translation. Int J Mol Sci 19 (7): 1931.

      52 52 O’Connor, O.A., Falchi, L., Lue, J.K. et al. (2019). Oral 5‐azacytidine and romidepsin exhibit marked activity in patients with PTCL: a multicenter phase 1 study. Blood 134 (17): 1395–1405.

      53 53 Yi, S., Sun, J., Qiu, L. et al. (2018). Dual role of EZH2 in cutaneous anaplastic large cell lymphoma: promoting tumor cell survival and regulating tumor microenvironment. J Invest Dermatol 138 (5): 1126–1136.

      54 54 Fernandez‐Pol, S., Ma, L., Joshi, R.P., and Arber, D.A. (2019). A survey of somatic mutations in 41 genes in a cohort of T‐cell lymphomas identifies frequent mutations in genes involved in epigenetic modification. Appl Immunohistochem Mol Morphol 27 (6): 416–422.

      55 55 Ng, S.Y., Brown, L., Stevenson, K. et al. (2018). RhoA G17V is sufficient to induce autoimmunity and promotes T‐cell lymphomagenesis in mice. Blood 132 (9): 935–947.

      56 56 Cortes, J.R., Ambesi‐Impiombato, A., Couronné, L. et al. (2018). RHOA G17V induces T follicular helper cell specification and promotes Lymphomagenesis. Cancer Cell 33 (2): 259–273.e7.

      57 57 Yoo, H.Y., Sung, M.K., Lee, S.H. et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46 (4): 371–375.

      58 58 Sakata‐Yanagimoto, M., Nakamoto‐Matsubara, R., Komori, D. et al. (2017). Detection of the circulating tumor DNAs in angioimmunoblastic T‐cell lymphoma. Ann Hematol 96 (9): 1471–1475.

      59 59 Pizzi, M., Margolskee, E., and Inghirami, G. (2018). Pathogenesis of peripheral T cell lymphoma. Annu Rev Pathol 13 (1): 293–320.

      60 60 Iqbal, J., Amador, C., McKeithan, T.W., and Chan, W.C. (2019). Molecular and genomic landscape of peripheral T‐cell lymphoma. In: T‐Cell and NK‐Cell Lymphomas: From Biology to Novel Therapies (eds. C. Querfeld, J. Zain and S.T. Rosen), 31–68. Cham: Springer International Publishing.

      61 61 Dunleavy, K., Wilson, W.H., and Jaffe, E.S. (2007). Angioimmunoblastic T cell lymphoma: pathobiological insights and clinical implications. Curr Opin Hematol 14 (4): 348–353.

      62 62 Gaulard, P. and de Leval, L. (2011). Follicular helper T cells: implications in neoplastic hematopathology. Semin Diagn Pathol 28 (3): 202–213.

      63 63 Zhou, Y., Attygalle, A.D., Chuang, S.S. et al. (2007). Angioimmunoblastic T‐cell lymphoma: histological progression associates with EBV and HHV6B viral load. Br J Haematol 138 (1): 44–53.

      64 64 Nelson, M., Horsman, D.E., Weisenburger, D.D. et al. (2008). Cytogenetic abnormalities and clinical correlations in peripheral T‐cell lymphoma. Br J Haematol 141 (4): 461–469.

      65 65 Fernández‐Piqueras, J. (2016). New mutations for nodal lymphomas of TFH origin. Blood 128 (11): 1446–1447.

      66 66 Yoo, H.Y., Kim, P., Kim, W.S. et al. (2016). Frequent CTLA4‐CD28 gene fusion in diverse types of T‐cell lymphoma. Haematologica 101 (6): 757–763.

      67 67 Attygalle, A., Feldman, A., and Dogan, A. (2013). ITK/SYK translocation in angioimmunoblastic T‐cell lymphoma. Am J Surg Pathol 37: 1456–1457.

      68 68 Zain,

Скачать книгу