The Peripheral T-Cell Lymphomas. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу The Peripheral T-Cell Lymphomas - Группа авторов страница 37

The Peripheral T-Cell Lymphomas - Группа авторов

Скачать книгу

of germinal‐center origin. Nat Genet 42 (2): 181–185.

      106 106 Bödör, C., Grossmann, V., Popov, N. et al. (2013). EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122 (18): 3165–3168.

      107 107 Sneeringer, C.J., Scott, M.P., Kuntz, K.W. et al. (2010). Coordinated activities of wild‐type plus mutant EZH2 drive tumor‐associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B‐cell lymphomas. Proc Natl Acad Sci U S A 107 (49): 20980.

      108 108 Italiano, A., Soria, J.C., Toulmonde, M. et al. (2018). Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B‐cell non‐Hodgkin lymphoma and advanced solid tumours: a first‐in‐human, open‐label, phase 1 study. Lancet Oncol 19 (5): 649–659.

      109 109 Yap, T.A., Johnson, P.W.M., Winter, J. et al. (2016). A phase I, open‐label study of GSK2816126, an enhancer of zeste homolog 2 (EZH2) inhibitor, in patients with relapsed/refractory diffuse large B‐cell lymphoma (DLBCL), transformed follicular lymphoma (tFL), other non‐Hodgkin's lymphomas (NHL), multiple myeloma (MM) and solid tumor. J Clin Oncol 34 (15 Suppl): TPS2595.

      110 110 Maruyama, D., Tobinai, K., Makita, S. et al. (2017). First‐in‐human study of the EZH1/2 dual inhibitor DS‐3201b in patients with relapsed or refractory non‐Hodgkin lymphomas: preliminary results. Blood 130 (Suppl 1): 4070.

      111 111 Ntziachristos, P., Tsirigos, A., Vlierberghe, P.V. et al. (2012). Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18 (2): 298–302.

      112 112 Zhang, J., Ding, L., Holmfeldt, L. et al. (2012). The genetic basis of early T‐cell precursor acute lymphoblastic leukaemia. Nature 481 (7380): 157–163.

      113 113 Danis, E., Yamauchi, T., Echanique, K. et al. (2016). Ezh2 controls an early hematopoietic program and growth and survival signaling in early T cell precursor acute lymphoblastic leukemia. Cell Rep 14 (8): 1953–1965.

      114 114 Shi, M., Shahsafaei, A., and Liu, C. (2015). Enhancer of zeste homolog 2 is widely expressed in T‐cell neoplasms, is associated with high proliferation rate and correlates with MYC and pSTAT3 expression in a subset of cases. Leuk Lymphoma 56 (7): 2087–2091.

      115 115 Yamagishi, M., Hori, M., Fujikawa, D. et al. (2016). Development and molecular analysis of synthetic lethality by targeting EZH1 and EZH2 in non‐Hodgkin lymphomas. Blood 128 (22): 462.

      116 116 Yamagishi, M., Fujikawa, D., Honma, D. et al. (2015). Polycomb‐dependent epigenetic landscape in Adult T Cell Leukemia (ATL); providing proof of concept for targeting EZH1/2 to selectively eliminate the HTLV‐1 infected population. Blood 126 (23): 572.

      117 117 Honma, D., Kanno, O., Watanabe, J. et al. (2017). Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci 108 (10): 2069–2078.

      118 118 Shortt, J., Ott, C.J., Johnstone, R.W., and Bradner, J.E. (2017). A chemical probe toolbox for dissecting the cancer epigenome. Nat Rev Cancer 17 (3): 160–183.

      119 119 Doroshow, D.B., Eder, J.P., and LoRusso, P.M. (2017). BET inhibitors: a novel epigenetic approach. Ann Oncol 28 (8): 1776–1787.

      120 120 Ozer, H.G., El‐Gamal, D., Powell, B. et al. (2018). BRD4 profiling identifies critical chronic lymphocytic leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor. Cancer Discov 8 (4): 458–477.

      121 121 Vázquez, R., Riveiro, M.E., Astorgues‐Xerri, L. et al. (2017). The bromodomain inhibitor OTX015 (MK‐8628) exerts anti‐tumor activity in triple‐negative breast cancer models as single agent and in combination with everolimus. Oncotarget 8 (5): 7598–7613.

      122 122 Wang, L., Matkar, S., Xie, G. et al. (2017). BRD4 inhibitor IBET upregulates p27kip/cip protein stability in neuroendocrine tumor cells. Cancer Biol Ther 18 (4): 229–236.

      123 123 Yokoyama, Y., Zhu, H., Lee, J.H. et al. (2016). BET inhibitors suppress ALDH activity by targeting ALDH1A1 super‐enhancer in ovarian cancer. Cancer Res 76 (21): 6320–6330.

      124 124 Piunti, A., Hashizume, R., Morgan, M.A. et al. (2017). Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23 (4): 493–500.

      125 125 Gryder, B., Yohe, M., Chou, H.C. et al. (2017). PAX3‐FOXO1 establishes myogenic super enhancers and confers BET Bromodomain vulnerability. Cancer Discov 7 (8): 884–899.

      126 126 Kohnken, R., Wen, J., Mundy‐Bosse, B. et al. (2018). Diminished microRNA‐29b level is associated with BRD4‐mediated activation of oncogenes in cutaneous T‐cell lymphoma. Blood 131 (7): 771–781.

      127 127 He, A. and Miranda, J.L. (2018). JQ1 reduces Epstein–Barr virus‐associated lymphoproliferative disease in mice without sustained oncogene repression. Leuk Lymphoma 59 (5): 1248–1251.

      128 128 Gopalakrishnan, R., Matta, H., Tolani, B. et al. (2016). Immunomodulatory drugs target IKZF1‐IRF4‐MYC axis in primary effusion lymphoma in a cereblon‐dependent manner and display synergistic cytotoxicity with BRD4 inhibitors. Oncogene 35 (14): 1797–1810.

      129 129 Dickinson, M., Kamdar, M., Huntly, B. et al. (2018). A phase I study of molibresib (GSK525762), a selective Bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of a phase I/II open label single agent study in subjects with Non‐Hodgkin's Lymphoma (NHL). Blood 132: 1682.

      130 130 Panfil, A.R., Al‐Saleem, J., Howard, C.M. et al. (2015). PRMT5 is upregulated in HTLV‐1‐mediated T‐cell transformation and selective inhibition alters viral gene expression and infected cell survival. Viruses 8 (1): 7.

      131 131 Li, Y., Chitnis, N., Nakagawa, H. et al. (2015). PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov 5 (3): 288–303.

      132 132 Tan, D., Phipps, C., Hwang, W.Y.K. et al. (2015). Panobinostat in combination with bortezomib in patients with relapsed or refractory peripheral T‐cell lymphoma: an open‐label, multicentre phase 2 trial. Lancet Haematol 2 (8): e326–e333.

      133 133 Amengual, J.E., Lichtenstein, R., Lue, J. et al. (2018). A phase 1 study of romidepsin and pralatrexate reveals marked activity in relapsed and refractory T‐cell lymphoma. Blood 131 (4): 397–407.

      134 134 Strati, P., Nastoupil, L.J., Davis, R.E. et al. (2020). A phase 1 trial of alisertib and romidepsin for relapsed/refractory aggressive B‐cell and T‐cell lymphomas. Haematologica 105 (1): e26–e28.

      135 135 Moskowitz, A.J., Koch, R., Mehta‐Shah, N. et al. (2017). In vitro, in vivo, and parallel phase I evidence support the safety and activity of duvelisib, a PI3K‐δ,γ inhibitor, in combination with romidepsin or bortezomib in relapsed/refractory T‐cell lymphoma. Blood 130 (Suppl 1): 819.

      136 136 Mehta‐Shah, N., Lunning, M.A., Boruchov, A.M. et al. (2015). A phase I/II trial of the combination of romidepsin and lenalidomide in patients with relapsed/refractory lymphoma and myeloma: activity in T‐cell lymphoma. J Clin Oncol 33 (15 Suppl): 8521.

      137 137 Cycon, K.A., Mulvaney, K., Rimsza, L.M. et al. (2013). Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B‐cell lymphoma. Immunology 140 (2): 259–272.

      138 138 Tiper, I.V. and Webb, T.J. (2016). Histone deacetylase inhibitors enhance CD1d‐dependent NKT cell responses to lymphoma. Cancer Immunol Immunother 65 (11): 1411–1421.

      139 139

Скачать книгу