The Peripheral T-Cell Lymphomas. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу The Peripheral T-Cell Lymphomas - Группа авторов страница 42

The Peripheral T-Cell Lymphomas - Группа авторов

Скачать книгу

function in T‐cell development, the Setd2 cKO mice were generated with Lck‐Cre transgenic mice [47]. After comparing the proportion of intraepithelial T cells in Setd2 wild‐type versus deficient mice, they observed a significant increase in the population of γδ‐positive T cells in Setd2‐deficient mice. Although these mice do not perfectly recapitulate human EATL, this model may provide a very useful tool for future modeling of this fatal disease and is being evaluated in preclinical studies.

      Over the years, murine models have played crucial roles as versatile tools for detailed investigation of T‐cell lymphomas. We now have a deeper understanding of the underlying mechanisms, disease pathogenesis and potential therapeutic interventions. Nevertheless, it is essential to understand the limitations of these model systems. Lack of precise simulation of the human disease and the microenvironment in mice are few among many shortcomings that hinder the success of novel drugs in clinical trials. The advent of targeted genetic manipulation using novel technologies may eventually resolve and refine the remaining differences making mouse the ultimate model organism of choice to study human ailments.

       Sakata‐Yanagimoto, M., Enami, T., Yoshida, K., et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.

       Miething, C., Grundler, R., Fend F, et al. (2003). The oncogenic fusion protein nucleophosmin–anaplastic lymphoma kinase (NPM–ALK) induces two distinct malignant phenotypes in a murine retroviral transplantation model. Oncogene 22 (30): 4642–4647.

       Chiarle, R., Gong, J.Z., Guasparri, I. et al. (2003). NPM‐ALK transgenic mice spontaneously develop T‐cell lymphomas and plasma cell tumors. Blood 101 (5): 1919–1927.

       Kawano, N., Ishikawa, F., Shimoda, K. et al. (2005). Efficient engraftment of primary adult T‐cell leukemia cells in newborn NOD/SCID/beta2‐microglobulin(null) mice. Leukemia 19 (8): 1384–1390.

       Cornejo, M.G., Kharas, M.G., Werneck, M.B. et al. (2009). Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models. Blood 113 (12): 2746–2754.

      1 1 Swerdlow, S., Campo, E., Harris, N. et al. (2017). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4e. Lyon: IARC Press.

      2 2 Crotty, S. (2014). T follicular helper cell differentiation, function, and roles in disease. Immunity 41 (4): 529–542.

      3 3 Yu, D., Tan, A.H., Hu, X. et al. (2007). Roquin represses autoimmunity by limiting inducible T‐cell co‐stimulator messenger RNA. Nature 450 (7167): 299–303.

      4 4 Ellyard, J.I., Chia, T., Rodriguez‐Pinilla, S.M. et al. (2012). Heterozygosity for Roquinsan leads to angioimmunoblastic T‐cell lymphoma‐like tumors in mice. Blood 120 (4): 812–821.

      5 5 Auguste, T., Travert, M., Tarte, K. et al. (2013). ROQUIN/RC3H1 alterations are not found in angioimmunoblastic T‐cell lymphoma. PLoS One 8 (6): e64536.

      6 6 Sakata‐Yanagimoto, M., Enami, T., Yoshida, K. et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.

      7 7 Dobay, M.P., Lemonnier, F., Missiaglia, E. et al. (2017). Integrative clinicopathological and molecular analyses of angioimmunoblastic T‐cell lymphoma and other nodal lymphomas of follicular helper T‐cell origin. Haematologica 102 (4): e148–e151.

      8 8 Palomero, T., Couronne, L., Khiabanian, H. et al. (2014). Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 46 (2): 166–170.

      9 9 Yoo, H.Y., Sung, M.K., Lee, S.H. et al. (2014). A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46 (4): 371–375.

      10 10 Muto, H., Sakata‐Yanagimoto, M., Nagae, G. et al. (2014). Reduced TET2 function leads to T‐cell lymphoma with follicular helper T‐cell‐like features in mice. Blood Cancer J 4: e264.

      11 11 Lai, A.Y., Fatemi, M., Dhasarathy, A. et al. (2010). DNA methylation prevents CTCF‐mediated silencing of the oncogene BCL6 in B cell lymphomas. J Exp Med 207 (9): 1939–1950.

      12 12 Nishizawa, S., Sakata‐Yanagimoto, M., Hattori, K. et al. (2017). BCL6 locus is hypermethylated in angioimmunoblastic T‐cell lymphoma. Int J Hematol 105 (4): 465–469.

      13 13 Zang, S., Li, J., Yang, H. et al. (2017). Mutations in 5‐methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin Invest 127 (8): 2998–3012.

      14 14 Cortes, J.R., Ambesi‐Impiombato, A., Couronné, L. et al. (2018). RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell 33 (2): 259–273.e7.

      15 15 Ng, S.Y., Brown, L., Stevenson, K. et al. (2018). RhoA G17V is sufficient to induce autoimmunity and promotes T‐cell lymphomagenesis in mice. Blood 132 (9): 935–947.

      16 16 Nguyen, T.B., Sakata‐Yanagimoto, M., Fujisawa, M. et al. (2020). Dasatinib is an effective treatment for angioimmunoblastic T‐cell lymphoma. Cancer Res 80 (9): 1875–1884.

      17 17 Fujisawa, M., Sakata‐Yanagimoto, M., Nishizawa, S. et al. (2018). Activation of RHOA‐VAV1 signaling in angioimmunoblastic T‐cell lymphoma. Leukemia 32 (3): 694–702.

      18 18 Sato, F., Ishida, T., Ito, A. et al. (2013). Angioimmunoblastic T‐cell lymphoma mice model. Leuk Res 37 (1): 21–27.

      19 19 Morris, S.W., Kirstein, M.N., Valentine, M.B. et al. (1995). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non‐Hodgkin's lymphoma. Science 267 (5196): 316–317.

      20 20 Kuefer, M.U., Look, A.T., Pulford, K. et al. (1997). Retrovirus‐mediated gene transfer of NPM‐ALK causes lymphoid malignancy in mice. Blood 90 (8): 2901–2910.

      21 21 Miething, C., Grundler, R., Fend, F. et al. (2003). The oncogenic fusion protein nucleophosmin–anaplastic lymphoma kinase (NPM–ALK) induces two distinct malignant phenotypes in a murine retroviral transplantation model. Oncogene 22 (30): 4642–4647.

      22 22 Miething, C., Grundler, R., Mugler, C. et al. (2004). A new method of retroviral lineage specific expression utilizing the Cre/lox system induces a T‐lymphoid malignancy in a mouse model of ALCL. Blood 104 (11): 348.

      23 23 Chiarle, R., Gong, J.Z., Guasparri, I. et al. (2003). NPM‐ALK transgenic mice spontaneously develop T‐cell lymphomas and plasma cell tumors. Blood 101 (5): 1919–1927.

      24 24 Chiarle, R., Simmons, W.J., Cai, H. et al. (2005). Stat3 is required for ALK‐mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11 (6): 623–629.

      25 25 Turner, S.D., Tooze, R., Maclennan, K., and Alexander, D.R. (2003). Vav‐promoter regulated oncogenic fusion protein NPM‐ALK in transgenic mice causes B‐cell lymphomas with hyperactive Jun kinase. Oncogene 22 (49): 7750–7761.

      26 26 Turner, S.D., Merz, H., Yeung, D., and Alexander, D.R. (2006). CD2 promoter regulated nucleophosmin‐anaplastic lymphoma kinase in transgenic mice causes B lymphoid malignancy. Anticancer Res 26 (5A): 3275–3279.

      27 27 Rajan, S.S., Li, L., Kweh, M.F. et al. (2019). CRISPR genome

Скачать книгу