Science in Short Chapters. W. Mattieu Williams
Чтение книги онлайн.
Читать онлайн книгу Science in Short Chapters - W. Mattieu Williams страница 15
So much speculation, and not a little extravagant speculation, has been devoted to the dynamics of the radiometer, that I feel some compunction in adding another stone to the heap, my only apology and justification for so doing being that I propose to regard the subject from a very unsophisticated point of view, and with somewhat heretical directness of vision—i.e., quite irrespective of atoms, molecules, or ether, or any other specific preconceptions concerning the essential kinetics of radiant forces, beyond that of regarding such forces as affections or conditions of matter which are transmitted radially in constant quantity, and therefore obey the necessary law of radial diffusion or inverse squares.
The primary difficulty which appears to have generally been suggested by the movements of the radiometer, is the case which it seems to present of mechanical action without any visible basis of corresponding reaction: a visible tangible object pushed forward, without any visible pushing agent or resisting fulcrum against which the moving body reacts.
This difficulty has been met by the invocation of obedient and vivacious molecules of residual atmospheric matter, which have been called upon to bound and rebound between the vanes and the inner surfaces of the glass envelope of the instrument.
How is it that the advocates of these activities have not sought to verify their speculations by modifying the shape and dimensions of the exhausted glass bulb or receiver?10 If the motion of the radiometer is due to such excursions and collisions, the length of excursion and the angles of collision must modify its motions; and such modification under given conditions would form a fine subject for the exercise of the ingenuity of molecular mathematicians. If their hypothetical data are sound, they should be able to predict the relative velocities or torsion-force of a series of radiometers of similar construction in all other respects, but with variable shapes and diameters of enclosing vessels.
If we divest our minds of all visions of hypothetical atoms, molecules, ethers, etc., and simply look at the facts of radiation with the same humility of intellect as we usually regard gravitation, this primary difficulty of the radiometer at once vanishes. The force of gravitation is a radiant force acting somehow between, or upon, or by distant bodies; and these bodies, however far apart, act and react upon each other with mutual forces, precisely equal and exactly contrary. We conceive the sun pulling the earth in a certain direction, and receiving from the earth an equal pull in a precisely contrary direction, and we have hitherto demanded no ethereal or molecular link for the transmission of these mutually attractive forces. Why, then, should we not regard radiant repulsive energy in the same simple manner?
If we do this there is no difficulty in finding the ultimate reaction fulcrum of the radiometer vanes. It is simply the radiating body, the match, the candle, the lamp, the sun, or whatever else may be the source of the impelling radiations. According to this view, the radiant source must be repelled with precisely the same energy as the arms or pendulum of the radiometer; and it would move backward or in opposite direction if equally free to move. If, by any means, we cause the glass envelope of the radiometer to become the radiant source, it should be repelled, and may even rotate in opposite direction to the vanes, or vice versâ. This has been done with floating radiometers.
Viewed thus as simple matter of fact, irrespective of any preconceived kinetics of intervening media, the net result of Mr. Crookes’s researches become nothing less than the discovery of a new law of nature of great magnitude and the broadest possible generality, viz., that the sun and all other radiant bodies—i.e., all the materials of the universe—exert a mechanical repulsive force, in addition to the calorific, luminous, actinic, and electrical forces with which they have hitherto been credited. He has shown that this force is refrangible and dispersible, that it is outspread with the spectrum, but is most concentrated, or active, in the region of the ultra-red rays, and progressively feeblest in the violet; or, otherwise stated, it exists in closer companionship with heat than with light, and closer with light than with actinism.
According to the doctrine of exchanges, which has now passed from the domain of theory to that of demonstrated law, all bodies, whatever be their temperature, are perpetually radiating heat-force, the amount of which varies, cæteris paribus, with their temperature. If we now add to this generalization that all bodies are similarly radiating mechanical force and suffering corresponding mechanical reaction, the theoretical difficulties of the radiometer vanish. What must follow in the case of a freely suspended body unequally heated on opposite sides?
It must be repelled in a direction perpendicular to the surface of its hottest side. If two rockets were affixed to opposite sides of a pendant body, and were to exert unequal ejective forces, the reaction of the stronger rocket would repel the body in the opposite direction to its preponderating ejection. This represents the radiometer vane with one side blackened and the other side bright. When exposed to luminous rays the black side becomes warmer than the bright side by its active absorption and conversion of light into heat, and thus the blackened face radiates in excess and recedes.
We may regard it thus as acting by its own radiations, or otherwise as acted upon by the more powerful radiant whose rays are differentially received by the black and bright sides. These different modes of regarding the action are perfectly consistent with each other, and analogous to the two different modes of regarding gravitation, when we describe the sun as attracting the earth, or, otherwise, the earth as gravitating to the sun. Strictly speaking, neither of these descriptions is correct, as the gravitation is mutual, and the total quantity exerted between the sun and the earth is equal to the sum of their energies, but it is sometimes convenient to regard the action from a solar standpoint, and at others from a terrestrial. So with the radiometer and the strictly mutual repulsions between it and the predominating radiant.
It appears to me that this unsophisticated conception of radiant mechanical repulsive force, and its necessary mechanical reaction on the radiant body, meets all the facts at present revealed by the experiments of Mr. Crookes and others.
The attraction which occurs when the disc of the radiometer is surrounded with a considerable quantity of atmospheric matter is probably due to inequality of atmospheric pressure. The absorbing face of the disc becomes heated above the temperature of the opposite face, the film of air in contact with the warmer face rises, leaving a relatively vacuous space in front. This produces a rush of air from back to front which carries the radiometer vane with it. When the exhaustion of the radiometer is carried so far that the residual air is only just sufficiently dense to neutralize the direct repulsion of radiation, the neutral point is reached. When exhaustion is carried beyond this, repulsion predominates.
Taking Mr. Crookes’s estimate of the mechanical energy of solar radiation at 32 grains per square foot, 2 cwts. per acre, 57 tons per square mile, etc., and accepting these as they are offered, i.e., merely as provisional and approximate estimates, we are led to a cosmical inference of the highest importance, one that must materially modify our interpretations of some of the grandest phenomena of the universe. Although the estimated sunlight pressure upon the earth, the three thousand millions of tons, is too small a fraction of the earth’s total weight to effect an easily measurable increase of the length of our year, the case is quite otherwise with the asteroids and the zones of meteoric matter revolving around the sun.
The mechanical repulsion of radiation is a superficial action, and must, therefore, vary with the amount of surface exposed, while that of gravitation varies with the mass. Thus the ratio of radiant repulsion to the attraction of gravitation goes on increasing with the subdivison of masses, and becomes an important fraction in the case of the smaller bodies of the solar system. A zone of meteorites traveling around the sun would be broken up, sifted, and sorted into different orbits, according to their diameters, if this superficial repulsion operated against gravitation without any compensating agency. Gravitation would be opposed in various degrees, neutralized, and, in the case of cosmic dust, even reversed. Comets