Science in Short Chapters. W. Mattieu Williams

Чтение книги онлайн.

Читать онлайн книгу Science in Short Chapters - W. Mattieu Williams страница 11

Автор:
Серия:
Издательство:
Science in Short Chapters - W. Mattieu Williams

Скачать книгу

insect must see a whole world of wonders of which we know little or nothing. True, we have microscopes, with which we can see one thing at a time if carefully laid upon the stage; but what is the finest instrument that Ross can produce compared to that with twenty-five thousand object-glasses, all of them probably achromatic, and each one a living instrument, with its own nerve-branch supplying a separate sensation? To creatures thus endowed with microscopic vision, a cloud of sandy dust must appear like an avalanche of massive rock-fragments, and everything else proportionally monstrous.

      One of the many delusions engendered by our human self-conceit and habit of considering the world as only such as we know it from our human point of view, is that of supposing human intelligence to be the only kind of intelligence in existence. The fact is, that what we call the lower animals have special intelligence of their own as far transcending our intelligence as our peculiar reasoning intelligence exceeds theirs. We are as incapable of following the track of a friend by the smell of his footsteps as a dog is of writing a metaphysical treatise.

      So with insects. They are probably acquainted with a whole world of physical facts of which we are utterly ignorant. Our auditory apparatus supplies us with a knowledge of sounds. What are these sounds? They are vibrations of matter which are capable of producing corresponding or sympathetic vibrations of the drums of our ears or the bones of our skull. When we carefully examine the subject, and count the number of vibrations that produce our world of sounds of varying pitch, we find that the human ear can only respond to a limited range of such vibrations. If they exceed three thousand per second, the sound becomes too shrill for average people to hear it, though some exceptional ears can take up pulsations or waves that succeed each other more rapidly than this.

      Reasoning from the analogy of stretched strings and membranes, and of air vibrating in tubes, etc., we are justified in concluding that the smaller the drum or the tube the higher will be the note it produces when agitated, and the smaller and the more rapid the aerial wave to which it will respond. The drums of insect ears, and the tubes, etc., connected with them, are so minute that their world of sounds probably begins where ours ceases; that the sound which appears to us as continuous is to them a series of separated blows, just as vibrations of ten to twelve per second appear to us. We begin to hear such vibrations as continuous sounds when they amount to about thirty per second. The insect’s continuous sound probably begins beyond three thousand. The blue-bottle may thus enjoy a whole world of exquisite music of which we know nothing.

      There is another very suggestive peculiarity in the auditory apparatus of insects. Its structure and position are something between those of an ear and of an eye. Careful examination of the head, of one of our domestic companions—the common cockroach or black-beetle—will reveal two round white points, somewhat higher than the base of the long outer antennæ, and a little nearer to the middle line of the head. These white projecting spots are formed by the outer transparent membrane of a bag or ball filled with fluid, which ball or bag rests inside another cavity in the head. It resembles our own eye in having this external transparent tough membrane, which corresponds to the cornea or transparent membrane forming the glass of our eye-window; which, like the cornea, is backed by the fluid in an ear-ball corresponding to our eye-ball, and the back of this ear-ball appears to receive the outspreadings of a nerve, just as the back of our eye is lined with that outspread of the optic nerve forming the retina. There does not appear to be in this or other insects a tightly stretched membrane which, like the membrane of our ear-drum, is fitted to take up bodily air-waves and vibrate responsively to them. But it is evidently adapted to receive and concentrate some kind of vibration, or motion, or tremor.

      What kind of motion can this be? What kind of perception does this curious organ supply? To answer these questions we must travel beyond the strict limits of scientific induction and enter the fairyland of scientific imagination. We may wander here in safety, provided we always remember where we are, and keep a true course guided by the compass-needle of demonstrable facts.

      I have said that the cornea-like membrane of the insect’s ear-bag does not appear capable of responding to bodily air-waves. This adjective is important, because there are vibratory movements of matter that are not bodily but molecular. An analogy may help to render this distinction intelligible. I may take a long string of beads and shake it into wavelike movements, the waves being formed by the movements of the whole string. We may now conceive another kind of movement or vibration by supposing one bead to receive a blow pushing it forward, this push to be communicated to the next, then to the third, and so on, producing a minute running tremor passing from end to end. This kind of action may be rendered visible by laying a number of billiard balls or marbles in line and bowling an outside ball against the end one of the row. The impulse will be rapidly and invisibly transmitted all along the line, and the outer ball will respond by starting forward.

      Heat, light, and electricity are mysterious internal movements of what we call matter (some say “ether,” which is but a name for imaginary matter). These internal movements are as invisible as those of the intermediate billiard balls; but if there be a line of molecules acting thus, and the terminal one strikes an organ of sense fitted to receive its motion, some sort of perception may follow. When such movements of certain frequency and amplitude strike our organs of vision, the sensation of light is produced. When others of greater amplitude and smaller frequency strike the terminal outspread of our common sensory nerves, the sensation of heat results. The difference between the frequency and amplitude of the heat waves and the light waves is but small, or, strictly speaking, there is no actual line of separation lying between them; they run directly into each other. When a piece of metal is gradually heated, it is first “black-hot;” this is while the waves or molecular tremblings are of a certain amplitude and frequency; as the frequency increases and amplitude diminishes (or, to borrow from musical terms, as the pitch rises), the metal becomes dull red-hot; greater rapidity, cherry red; greater still, bright red; then yellow-hot and white-hot: the luminosity growing as the rapidity of molecular vibration increases.

      There is no such gradation between the most rapid undulations or tremblings that produce our sensation of sound and the slowest of those which give rise to our sensations of gentlest warmth. There is a huge gap between them, wide enough to include another world or several other worlds of motion, all lying between our world of sounds and our world of heat and light, and there is no good reason whatever for supposing that matter is incapable of such intermediate activity, or that such activity may not give rise to intermediate sensations, provided there are organs for taking up and sensifying (if I may coin a desirable word) these movements.

      As already stated, the limit of audible tremors is three to four thousand per second, but the smallest number of tremors that we can perceive as heat is between three and four millions of millions per second. The number of waves producing red light is estimated at four hundred and seventy-four millions of millions per second; and for the production of violet light, six hundred and ninety-nine millions of millions. These are the received conclusions of our best mathematicians, which I repeat on their authority. Allowing, however, a very large margin of possible error, the world of possible sensations lying between those produced by a few thousands of waves and any number of millions is of enormous width.

      In such a world of intermediate activities the insect probably lives, with a sense of vision revealing to him more than our microscopes show to us, and with his minute eye-like ear-bag sensifying material movements that lie between our world of sounds and our other far-distant worlds of heat and light.

      There is yet another indication of some sort of intermediate sensation possessed by insects. Many of them are not only endowed with the thousands of lenses of their compound eyes, but have in addition several curious organs that have been designated “ocelli” and “stemmata.” These are generally placed at the top of the head, the thousand-fold eyes being at the sides. They are very much like the auditory organs above described—so much so that in consulting different authorities for special information on the subject I have fallen into some confusion, from which I can only escape by supposing that the organ which one anatomist describes as the ocelli of certain insects is regarded as the auditory

Скачать книгу