Lightning Rod Conference. Various
Чтение книги онлайн.
Читать онлайн книгу Lightning Rod Conference - Various страница 8
At the same time, having regard to the importance of silent discharge from sharp points, we suggest that at one foot below the extreme top of the upper terminal there be firmly attached, by screws and solder, a copper ring, bearing three or four copper needles, each 6 inches long and tapering from ¼ inch diameter to as fine a point as can be made; and with the object of rendering the sharpness as permanent as possible, we advise that they be platinized, gilded, or nickel plated.
Vanes, finials, and ornamental ironwork so frequently form the upper portion of edifices, that it is essential to consider their relation to the conductor. They should always be in perfect metallic connection with the conductor. The possibility of such metal work inducing the charge to desert the conductor for some other path is sometimes suggested, but it could not happen unless the conductor were out of order, e.g., of inadequate conducting power, or had an imperfect earth-contact.
With respect to factory chimneys, a different practice prevails in England from that which is nearly universal on the Continent. In this country one straight rod is usually carried up on one side of the chimney to a height above the top about equal to the diameter of the chimney. On the Continent two arches of iron are put crosswise over the aperture of the chimney, and a vertical rod is carried up from the intersection. In both systems the upper terminal suffers from the corroding effect of the fumes from the chimney. Dr. Mann thought, Appendix F, p. (132), that considering the ready path for lightning afforded by the heated smoke discharged from chimneys, a coronal conductor should be placed upon them, as well as a multiple point. Messrs. Gray say, p. (9): “For high chimney shafts we fit a copper band round the top, and four points thereon connected to main down rod.” The Edinburgh Gas Works chimney, 341 feet high and 14 feet across at the top, was fitted with a conductor under the advice of Faraday, Appendix F, p. (89). It had an iron plate on the top; Faraday directed that the rod should be connected with this plate, and the upper terminal should rise vertically 6 feet above it.
We are of opinion that a coronal or copper band, with stout copper points, each about 1 ft. long, at intervals of 2 or 3 ft. throughout the circumference, will make the most durable and generally useful protector for a factory chimney, but these points should be gilded or otherwise protected against corrosion.
MATERIAL FOR CONDUCTOR.—Iron and copper are practically the only two metals which need consideration; brass, which has sometimes been used is so perishable that its employment is a self-evident error. We will assume the conductivity of equal lengths and weights of iron to be, in the case of steady currents of electricity,⅙th that of copper, and the cost of iron to be ⅑th that of copper, this would make the cost of copper for equal conducting power 9⁄6ths, or 50 per cent. dearer than iron. But there are other matters to be considered: (1) the great weight and bulk of iron rods; (2) their deterioration by rust; (3) the serious obstruction offered by a rusty joint; (4) the suddenness of lightning discharge which modifies the conductivity; and lastly, that iron is so much more rigid than copper that (except in the form of iron wire rope, of which we shall speak hereafter) it can rarely be used in greater lengths than 20 feet, and thus numerous joints become necessary, whereas every needless joint should be avoided.
As regards galvanizing, we think it scarcely judicious to trust entirely to it for protection against oxidation, for many instances of imperfect galvanizing have come to our knowledge.
On the other hand copper becomes brittle, not only when exposed to the air, but also by the passage through it of powerful charges of atmospheric electricity. Franklin used iron, and it is employed in America and on the Continent much more generally than copper, and it is less tempting to the thief.
Nevertheless, as the cost of erection bears a considerable ratio to the cost of the rod itself, and as iron possesses the disadvantages above stated, we think that in all ordinary cases a copper rod will in the end prove the cheapest, as it will certainly be the most durable.
SIZE OF ROD.—This is perhaps the most difficult subject which has to be determined. We greatly regret the shortness of Table I. in Appendix K; but we think that it must be assumed from it that lightning has fused a copper rod ·10 in. (⅒th) in area, i.e., weighing 6 ounces to the foot. We have also the Caterham case, Appendix I, p. (214), where a copper tube weighing 5¾ ounces per foot was heated to redness.
The saving of cost which might be effected by using, for very low buildings, rather slighter rods than for ordinary edifices is not worth considering. In a 30 feet rod it could hardly amount to 10s. We therefore recommend as the minimum to be used:—
Material. | Pattern. | Diameter. | Sectional Area of Metal. | Weight per foot. |
---|---|---|---|---|
in. | sq. in. | |||
Copper | Rope | ½ | ·10 | 6 oz. |
Copper | Round Rod | ⅜ | ·11 | 7 oz. |
Copper | Tape | ¾ × ⅛ | ·09 | 6 oz. |
Iron | Round Rod | 9/10 | ·64 | 35 oz. |
SHAPE OF ROD.—This depends upon a subject which until lately was warmly discussed, viz., upon the relative importance of the sectional area, and of the superficial area of a conductor; a matter which has been the subject of active discussion among electrical authorities. Faraday and Sir W. Snow Harris, for example, held diametrically opposite views respecting it. [Appendix F, p. (89), and I, p. (195).]
There is abundant and conclusive evidence that in the case of steady electric currents, conductivity depends upon sectional area alone, and not at all upon extent of surface, and experiments by Mr. Preece and Dr. Warren De la Rue tend to show that, in the case of sudden discharges from condensers, to which lightning discharges are probably analogous, the influence of form is not considerable. On the other hand, there is equally conclusive evidence that the facility with which currents of short duration pass through conductors is affected by the form and arrangement, as well as by the sectional area of the conductors. Upon the whole we agree with the opinion quoted below, from a writer recognized in the United States as a high authority on lightning conductors, who, after describing and engraving more than fifty patterns of rods, says[1]:—
1. Spang, “A Practical Treatise on Lightning Protection,” p. 121.
“The alleged improvements in the said conductors are, in nearly all cases, worthless, or of a trifling and unimportant character. The fact is, the said conductors are quite inferior, and contain no essential improvement upon the ordinary round iron rod used during the days of Franklin.”
In Europe the only forms at all generally employed are:—
Rods (round or square); Tubes; Tape; Ropes (wire, or wire with hemp centres);