Biological Mechanisms of Tooth Movement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biological Mechanisms of Tooth Movement - Группа авторов страница 24

Biological Mechanisms of Tooth Movement - Группа авторов

Скачать книгу

the cellular, molecular, and genetic levels. The rapid reactions occurring at the initial stage of mechanotherapy, and slower adaptive changes at the later stages of treatment, have attracted increasing attention. This chapter addresses the evolutionary traits of the development of concepts pertaining to the biology of OTM.

       The old pressure hypothesis of Schwalbe–Flourens, which postulated that pressure moves teeth, preceded the concept that alveolar bone resorption takes place on one side of the dental root, while deposition occurs on the opposite side, until the pressure is eliminated. Hecht (1900), Sandstedt (1904), Pfaff (1906), and Angle (1907) supported this hypothesis (Oppenheim, 1911).

       Based on his vast clinical experience, Kingsley (1881) stated that slow OTM is associated with favorable tissue‐remodeling changes (resorption and deposition of alveolar bone), while quick movements displace the entire bony lamellae along with the teeth, while retaining their functional and structural integrity. He attributed these features to the elasticity, compressibility, and flexibility of bone tissue. This report is one of the first written explanations for the biological basis of OTM, although it is not frequently cited (Oppenheim, 1911).

Photo shows the page 1 from Sandstedt’s original article on histological studies of tooth movement published in 1904.

      (Source: Sandstedt, 1904, 1905.)

      Walkhoff’s hypothesis on the biology of OTM

      Soon after Kingsley’s contribution, Walkhoff (1890) stated that “movement of a tooth consists in the creation of different tensions in the bony tissue, its consolidation in the compensation of these tensions.” Walkhoff’s hypothesis was largely based on the elasticity, flexibility, and compressibility of bone, and the transposition of the histological elements (such as the PDL). He also stated that alveolar bone, after all the remodeling changes, maintains its thickness, due to transformation or apposition of bone during the consolidating (retentive) period (Walkhoff, 1891). He emphasized the importance of retention, stating that “osteoid tissue has nothing to do with tooth movement. If we were to remove the retaining devices already after a few weeks from corrected protruding front teeth like from a fractured bone after the formation of a callus, we had only to deal with failures.” The propositions by Walkhoff were based solely on his clinical observations and practical knowledge but lacked the backing of histological evidence.

      In 1900, Hecht described a cartilaginous transformation of the bone and rupture of bony spicules surrounding teeth during OTM. He interpreted this situation as an indication of severe changes and leaned upon Schwalbe–Flourens’ pressure hypothesis (Oppenheim, 1911) to substantiate his interpretation. However, Oppenheim argued against this viewpoint, stating that the severe changes, which Hecht had observed, might have been the result of the application of excessive force (Oppenheim, 1911). In any case, Hecht did not support his assumptions with any histological evidence.

Photos depict the plate I from Sandstedt’s original article showing photographs of the control (1) and experimental (2) dogs at sacrifice. The mandibular canines were removed to allow the movement of the maxillary teeth. The appliance consisted of an archwire inserted into tubes attached to bands on the upper canines; distal to the tubes was a screw mechanism, which, when tightened, moved the incisors lingually and the canines mesially.

      (Source: Sandstedt, 1904, 1905).

Photos depict the plate III from Sandstedt’s original article showing horizontal sections through the right maxillary canine; the direction of movement is towards the top. (a) A section cut in close proximity to the alveolar rim. (b) A section through the middle third of the same tooth. General remodeling activity at the bone–PDL interface is seen but evidence of the accelerated bone formation and resorption is absent. This area corresponds to the center of rotation of the tooth.

      (Source: Sandstedt, 1904, 1905.).

      (a) (Sandstedt’s Figure 9.) A section cut in close proximity to the alveolar rim. A. At the site of presumptive compression, the PDL shows the glassy appearance characteristic of hyalinization, with osteoclasts undermining the adjacent alveolar wall. B. On the buccal side of the root, a thin layer of lighter staining new bone is demarcated from the old bone by a von Ebner (reversal) line. At the bottom, new bone takes the form of lighter staining bony trabeculae of woven bone orientated in the direction of pull. C. On the right side, osteoclasts are resorbing the alveolar wall; on the left, the detachment of the PDL from the bone is the result of a tear during sectioning.

      (Source: Sandstedt, 1904, 1905.).

      (b) (Sandstedt’s Figure 10) A section through the middle third of the same tooth (in dogs, the pulp canal expands towards the middle third of the root before narrowing towards the apex). General remodeling activity at the bone–PDL interface is seen but evidence of the accelerated bone formation and resorption is absent. This area corresponds to the center of rotation of the tooth.

      (Source: Sandstedt, 1904, 1905.)

Photo depicts the plate IV A from Sandstedt’s original article. These sections show at a higher power the cellular and tissue changes in the PDL and alveolar bone at sites of presumptive tension and compression. Sandstedt’s Figure 11: tension in the PDL.

Скачать книгу