Biological Mechanisms of Tooth Movement. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biological Mechanisms of Tooth Movement - Группа авторов страница 28

Biological Mechanisms of Tooth Movement - Группа авторов

Скачать книгу

by Reitan (1960). The figure shows pressure in the PDL during tooth movement, where cells gradually disappear in a circumscribed area. A, Root surface: B, compressed cell free fibers; C, border line between bone and hyalinized tissue: D, undermining bone resorption; E, small marrow space in dense, compact lamina dura."/>

      (Source: Reitan, 1960. Reproduced with permission of Elsevier.)

Photo depicts the (A) Formation of cells and capillaries in hyalinized tissue after the force was released as shown by Reitan (1960). B, Root surface; C, direct resorption; D, undermining resorption.

      (Source: Reitan, 1960. Reproduced with permission of Elsevier.)

      The fluid dynamic hypothesis

Schematic illustration of constriction of a blood vessel by the periodontal fibers. The flow of blood in the vessels is occluded by the entwining periodontal fibers. Below the stenosis, the pressure drop gives rise to the formation of minute gas bubbles, which can diffuse through the vessel walls. Above the stenosis, fluid diffuses through the walls of the cirsoid aneurysms formed by the build-up of pressure.

      (Source: Bien, 1966. Reproduced with permission of SAGE Publications.)

Photo depicts the lodgment of minute gas bubbles at small radii of curvature. The minute bubbles of gas, which diffuse through the blood vessel walls below the stenosis, lodge against the solid boundaries of tooth root and bone. Since there are many more areas of small radii of curvature in the bone, a greater number of gas bubbles may accumulate on the bone surface rather than on the root surface.

      (Source: Bien, 1966. Reproduced with permission of SAGE Publications.)

      The bone‐bending hypothesis

      Baumrind (1969) explored the assumption that orthodontic forces bend the alveolar bone. He measured changes in PDL cell dimensions, metabolic activity, and fiber synthesis with the help of radioisotopes (tritiated thymine, uridine, and proline). While discussing the findings of his research, he highlighted a conceptual flaw in Schwarz’s pressure–tension hypothesis. He described the PDL as a continuous hydrostatic system, which, in accordance with Pascal’s law, dictates that force applied to this system is distributed equally to all regions of the PDL. He emphasized that the presence of fibers in the PDL does not modify the operation of this law, because of the concomitant existence of a continuous body of liquefied ground substance. He recognized that only part of the PDL, where differential pressures exist, as mentioned in the pressure–tension hypothesis, can be developed, is actually solid, i.e., bone, tooth, and discrete solid fractures of the PDL.

      Kingsley (1881) and Farrar (1888) were the first to be credited for proposing the concept of bone bending as being an integral part of OTM. Farrar wrote in favor of this hypothesis: “Teeth move by one of two kinds of tissue changes in the alveolus … by the reduction of the alveolus through what is called absorption on one side of the tooth, followed by the growth of new supporting tissue on the other and by bending of the alveolar bone.” Kingsley and Farrar increased the force levels to such an extent that visible bending of alveolar bone could be observed, but several authors who followed this approach complained that their patients had experienced alveolar fractures. Because of this problem, and the influence of Oppenheim and his lectures in the Angle School, the pressure–tension hypothesis

Скачать книгу