3D Printing for Energy Applications. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу 3D Printing for Energy Applications - Группа авторов страница 13
5 5 Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert‐Demut, I., Schlier, L., . . . Greil, P. (2014). Additive manufacturing of ceramic‐based materials. Advanced Engineering Materials, 16, 729.
6 6 Nadgorny, M., & Ameli, A. (2018). Functional polymers and nanocomposites for 3D printing of smart structures and devices. ACS Applied Materials and Interfaces, 10, 17489.
7 7 Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies. New York: Springer Science + Business Media LLC.
8 8 Mueller, J., Courty, D., Spielhofer, M., Spolenak, R., & Shea, K. (2017). Mechanical properties of interfaces in inkjet 3D printed single‐ and multi‐material parts. Additive Manufacturing, 4, 193–199.
9 9 Lopes, L. R., Silva, A. F., & Carneiro, O. S. (2018). Multi‐material 3D printing: The relevance of materials affinity on the boundary interface performance. Additive Manufacturing, 23, 45.
10 10 Gaytan, S. M., Cadena, M. A., Karim, H., Delfin, D., Lin, Y., Espalin, D., . . . Wicker, R. B. (2015). Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceramics International, 41, 6610.
11 11 Zhou, X., Parida, K., Halevi, O., Liu, Y., Xiong, J., Magdassi, S., & Lee, P. S. (2020). All 3D‐printed stretchable piezoelectric nanogenerator with non‐protruding kirigami structure. Nano Energy, 72, 104676.
12 12 Tubío, C. R., Guitián, F., & Gil, A. (2016). Fabrication of ZnO periodic structures by 3D printing. Journal of the European Ceramic Society, 36, 3409.
13 13 Yang, Y., Chen, Z., Song, X., Zhu, B., Hsiai, T., Wu, P.‐I., . . . Shung, K. K. (2016). Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy, 22, 414.
14 14 Yee, D. W., Lifson, M. L., Edwards, B. W., & Greer, J. R. (2019). Additive manufacturing of 3D‐architected multifunctional metal oxides. Advanced Materials, 31, 1.
15 15 Chavez, L. A., Wilburn, B. R., Ibave, P., Delfin, L. C., Vargas, S., Diaz, H., . . . Lin, Y. (2019). Optimization of 3D printing parameters for BaTiO3 piezoelectric ceramics through design of experiments'. Materials Research Express, 6, 8.
16 16 Hoag, C., Spradling, D., & Shulman, H. (2012). Introduction to additive manufacturing of ceramics (pp. 15). Ceramic Industry.
17 17 Compton, B. G., & Lewis, J. A. (2014). 3D‐printing of lightweight cellular composites. Advanced Materials, 26, 5930–5935.
18 18 Castles, F., Isakov, D., Lui, A., Lei, Q., Dancer, C. E. J., Wang, Y., . . . Grant, P. S. (2016). Microwave dielectric characterisation of 3D‐printed BaTiO3/ABS polymer composites. Scientific Reports, 6, 22714.
19 19 Scheithauer, U., Weingarten, S., Johne, R., Schwarzer, E., Abel, J., Richter, H.‐J., . . . Michaelis, A. (2017). Ceramic‐based 4D components: Additive manufacturing (AM) of ceramic‐based functionally graded materials (FGM) by thermoplastic 3D printing (T3DP). Materials, 10, 1368.
20 20 Cui, H., Hensleigh, R., Yao, D., Maurya, D., Kumar, P., Kang, M. G., . . . Zheng, X. R. (2019). Three‐dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 18, 234–241.
21 21 Kim, H., Renteria‐Marquez, A., Islam, M. D., Chavez, L. A., Rosales, C. A. G., Ahsan, M. A., . . . Lin, Y. (2019). Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusión 3D printing technique. Journal of the American Ceramic Society, 102, 3685–3694.
22 22 Masciandaro, S., Torrell, M., Leone, P., & Tarancón, A. (2019). Three‐dimensional printed yttria‐stabilized zirconia self‐supported electrolytes for solid oxide fuel cell applications. Journal of the European Ceramic Society, 39, 9–16.
23 23 McOwen, D. W., Xu, S., Gong, Y., Wen, Y., Godbey, G. L., Gritton, J. E., . . . Wachsman, E. D. (2018). 3D‐printing electrolytes for solid‐state batteries. Advanced Materials, 30, 1707132.
24 24 Esposito, V., Gadea, C., Hjelm, J., Marani, D., Hu, Q., Agersted, K., . . . Jensen, S. H. (2015). Fabrication of thin yttria‐stabilized‐zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells. Journal of Power Sources, 273, 89.
25 25 Sukeshini, A. M., Cummins, R., Reitz, T. L., & Miller, R. M. (2009). Inkjet printing of anode supported SOFC: Comparison of slurry pasted cathode and printed cathode. Electrochemical and Solid‐State Letters, 12, B176.
26 26 Sun, K., Wei, T. S., Ahn, B. Y., Seo, J. Y., Dillon, S. J., & Lewis, J. A. (2013). 3D printing of interdigitated Li‐Ion microbattery architectures. Advanced Materials, 25, 4539.
27 27 Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S., Xiong, Y., . . . Lewis, J. A. (2009). Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 323, 1590.
28 28 van Dijk, L., Paetzold, U. W., Blab, G. A., Schropp, R. E. I., & Di Vece, M. (2016). 3D‐printed external light trap for solar cells. Progress in Photovoltaics, 24, 623.
29 29 Pesce, A., Hornés, A., Núñez, M., Morata, A., Torrell, M., & Tarancón, A. (2020). 3D printing the next generation of enhanced solid oxide fuel and electrolysis cells. Journal of Materials Chemistry A, 8, 16926–16932.
30 30 de Hazan, Y. (2012). Robotic deposition of 3D nanocomposite and ceramic fiber architectures via UV curable colloidal inks. Journal of the European Ceramic Society, 32, 1187.
31 31 Stuecker, J. N. (2004). Advanced support structures for enhanced catalytic activity. Industrial and Engineering Chemistry Research, 43, 51.
32 32 Van Noyen, J. (2011). Catalyst design with porous functional structures. WIT Transactions on Ecology and the Environment, 154, 93.
33 33 Scheffler, M., & Colombo, P. (Eds.) (2005). Heterogeneously catalyzed processes with porous cellular ceramic monoliths (Chapter 5.4). In Cellular ceramics: Structure, manufacturing, properties and applications (pp. 454). Weinheim: Wiley‐VCH GmbH.
34 34 Dautzenberg, F. M., & Mukherjee, M. (2001). Process intensification using multifunctional reactors. Chemical Engineering Science, 56, 251.
1 Additive Manufacturing of Functional Metals
Venkata Karthik Nadimpalli and David Bue Pedersen
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
1.1 Introduction
Additive manufacturing (AM) technologies [1, 2] comprise a family of manufacturing methods that colloquially are known by the common appellation of “3D Printing.” AM has created a strong linkage between digital and physical manufacturing, thus nourishing by its nature, a wider trend, digitization, and the automation of the manufacturing industry. For this reason, the increasing adoption of AM within the manufacturing industry is pushing companies to research new ways of adapting their manufacturing models and optimize their manufacturing strategies by integrating these manufacturing