Galaxies. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Galaxies - Группа авторов страница 8

Galaxies - Группа авторов

Скачать книгу

      The Classification of Galaxies

       Ronald BUTA

       Astrophysics, University of Alabama, Tuscaloosa, USA

      The classification of the forms of galaxies in a well-defined visual system is a critical step in the study of galaxies as physical objects. The Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system is currently the most detailed approach that can be applied effectively to more than 95% of all galaxies. This chapter describes the different types of galaxies and the factors that may determine various morphological features.

      Galaxies are complex gravitational systems whose structure has been influenced not only by how they formed but also by the environment into which they were born. A century ago, getting a classifiable image of a single galaxy was a major effort involving long exposures of photograph plates. Today, there are classifiable images of literally millions of galaxies available through the Internet. Although it is not obvious how any galaxy arrived at its current morphological state, examination of the details of large numbers of galaxies have led to important physical insights into the roles played by both internal and external processes. It is for this reason that classical galaxy morphology and classification have survived into the modern era.

      Hubble recognized that there are basically two classes of galaxies: disk-shaped galaxies and non-disk-shaped galaxies. In a disk galaxy, the structure is dominated by a highly flattened stellar component. Within this disk, other structures may be seen, such as spiral arms, bars, rings, a central bulge and extensive distributions of interstellar gas and dust. The way these structures are seen depends on the inclination of the plane of the disk to our line of sight. For a given galaxy, we say the inclination i is 0° when the disk is seen face-on, and 90° when the disk is seen edge-on. Disk planes are randomly oriented to the line of sight (meaning they are uniformly distributed in sin i), which complicates the interpretation of highly inclined cases. Even a century ago, disk-shaped galaxies were known to be more common than non-disk galaxies to the point that the latter were considered of greater interest (Keeler 1899).

      The existence of non-disk-shaped (and therefore non-spiral) galaxies was at first somewhat controversial. Based on the limited plate material available in his day, Curtis (1918) believed that all galaxies were spiral, and any that did not appear to be spiral on his plates would be found to be spiral when observed with larger telescopes. Hubble, having access to better telescopes, disagreed with this conclusion and believed that genuine non-spiral galaxies existed. Hubble recognized such galaxies as elliptical galaxies, where the luminosity distribution is defined by a regular decline from a bright center to the faint outer regions. Ellipticals were thought to be characterized by no other features but their isophotal shapes, which ranged from round (E0) to a flattening approaching that of disk-shaped galaxies (E7). In fact, Hubble believed the sequence of E galaxy shapes blended smoothly into the domain of disk-shaped galaxies, which he split into two parallel sequences of normal and barred spirals characterized by the degree of central concentration, the degree of resolution of the spiral arms into what were likely to be star-forming regions and the degree of openness of the spiral arms. Hubble (1936) illustrated these features in his famous “tuning fork” of galaxy morphologies (Figure 1.1). Although this view is now obsolete, the tuning fork is still an effective way of binning galaxies into astrophysically meaningful classes.

      In stellar astronomy, temporal terms are often used to describe certain kinds of stars. Stars of spectral classes O, B and A tend to be young and are known as “early-type” stars, while those of spectral classes K and M tend to be older and are called “late-type” stars. Those of spectral classes F and G are known as “intermediate-type” stars. Hubble found it convenient to use similar terms for galaxies, calling galaxies on the left part of the tuning fork early-type

Скачать книгу