Amorphous Nanomaterials. Lin Guo
Чтение книги онлайн.
Читать онлайн книгу Amorphous Nanomaterials - Lin Guo страница 28
17 17 Krivanek, O.L., Chisholm, M.F., Nicolosi, V. et al. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464: 571–574.
18 18 Gibson, J.M. (1987). Now you see them, now you don’t. Nature 329: 763–764.
19 19 Huxford, N.P., Eaglesham, D.J., and Humphreys, C.J. (1987). Limits on quantitative information from high-resolution electron microscopy of YBa2Cu3O7 superconductors. Nature 329: 812–813.
20 20 Coene, W., Janssen, G., Op de Beeck, M., and Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Lett. 69: 3743–3746.
21 21 Jia, C.L. and Urban, K. (1998). Microstructure of columnar-grained SrTiO3 and BaTiO3 thin films prepared by chemical solution deposition. J. Mater. Res. 13: 2206–2217.
22 22 Jia, C.L., Mi, S.B., Urban, K. et al. (2008). Atomic-scale study of electric dipoles near charge and uncharged domain walls in ferroelectric films. Nat. Mater. 7: 57–61.
23 23 Muller, D.A., Sorsch, T., Moccio, S. et al. (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399: 758–761.
24 24 Chau, R., Doyle, B., Datta, S. et al. (2007). Integrated nanoelectronics for the future. Nat. Mater. 6: 810–812.
25 25 Baibich, M.N., Broto, J.M., Fert, A. et al. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61: 2472–2475.
26 26 Murdock, E.S., Natarajan, B.R., and Walmsley, R.G. (1990). Noise properties of multilayered Co-alloy magnetic recording media. IEEE Trans. Magn. 26: 2700–2705.
27 27 Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R. (1995). Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74: 3273–3276.
28 28 Fert, A. (2008). Origin, development and future of spintronics (Noble lecture). Angew. Chem. Int. Ed. 47: 5956–5967.
29 29 Schweinfest, R., Paxton, A.T., and Finnis, M.W. (2004). Bismuth embrittlement of copper is an atomic size effect. Nature 432: 1008–1011.
30 30 Lozovoi, A.Y., Paxton, A.T., and Finnis, M.W. (2006). Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper. Phys. Rev. B 74: 155416.
31 31 Voyles, P.M., Muller, D.A., Grazuil, J.L. et al. (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416: 826–829.
32 32 Jia, C.L., Lentzen, M., and Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299: 870–873.
33 33 Muller, D.A., Nakagawa, N., Ohtomo, A. et al. (2004). Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430: 657–661.
34 34 Ishikawa, R., Okunishi, E., Sawada, H. et al. (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10: 278–281.
35 35 Krivanek, O.L., Dellby, N., Murfitt, M.F. et al. (2010). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110: 935–945.
36 36 Ohtsuka, M., Yamazaki, T., Kotaka, Y. et al. (2012). Imaging of light and heavy atomic columns by spherical aberration corrected middle-angle bright-field STEM. Ultramicroscopy 120: 48–55.
37 37 Lin, J., Cretu, O., Zhou, W. et al. (2014). Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat. Nanotechnol. 9: 436–442.
38 38 Zan, R., Ramasse, Q.M., Banegert, U., and Novoselow, K.S. (2012). Graphene re-knits its holes. Nano Lett. 12: 3936–3940.
39 39 Gong, Y., Liu, Z., Lipini, A.R. et al. (2014). Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14: 442–449.
40 40 Biskup, N., Salafranca, J., Mehta, V. et al. (2014). Insulating ferromagnetic LaCoO3-δ films: a phase induced by ordering of oxygen vacancies. Phys. Rev. Lett. 112: 087202.
41 41 Spiecker, E., Garbrecht, M., Jager, W., and Tillmann, K. (2010). Advantages of aberration correction for HRTEM investigation of complex layer compounds. J. Microsc. 237: 341–346.
42 42 Crewe, A.V. (1966). Scanning electron microscopes: is high resolution possible? Science 154: 729–738.
43 43 Neaton, J.B., Muller, D.A., and Ashcroft, N.W. (2000). Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett. 85: 1298–1301.
44 44 Muller, D.A., Singh, D.J., and Silcox, J. (1998). Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: a study of nickel aluminum alloys. Phys. Rev. B 57: 8182–8202.
45 45 Ohtomo, A., Muller, D.A., Grazul, J.L., and Hwang, H.Y. (2002). Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419: 378–380.
46 46 Browning, N.D., Wallis, D.J., Nellist, P.D., and Pennycook, S.J. (1997). EELS in the STEM: determination of materials properties on the atomic scale. Micron 28: 333–348.
47 47 Scheinfein, M. and Isaacson, M. (1986). Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol. B 4: 325–332.
48 48 Daulton, T.L., Little, B.J., and Lowe, K. (2003). Determination of chromium oxidation state in cultures of dissimilatory metal reducing bacteria by electron energy loss spectroscopy. Microsc. Microanal. 9: 1480–1481.
49 49 Bosman, M., Watanabe, M., Alexander, D.T.L., and Keast, V.J. (2006). Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106: 1024–1032.
50 50 Krivanek, O.L., Dellby, N., Keyse, R.J. et al. (2008). CHAPTER 3- Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. Adv. Imag. Elect. Phys. 153: 121–160.
51 51 Howie, A. (1963). Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc. R. Soc. Lond. A 271: 268–287.
52 52 Muller, D. and Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59: 195–213.
53 53 Kimoto, K., Asaka, T., Nagai, T. et al. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450: 702–704.
54 54 Yin, X.L., Calatayud, M., Qiu, H. et al. (2008). Diffusion versus desorption: complex behavior of H atoms on an oxide surface. ChemPhysChem 9: 253–257.
55 55 Fan, C.Y., Wang, J., Jacobi, K., and Ertl, G.J. (2001). The oxidation of CO on RuO2 (110) at room temperature. Chem. Phys. 114: 1058–1061.
56 56 Kurtz, M., Strunk, J., Hinrichsen, O. et al. (2005). Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. Angew. Chem. Int. Ed. 44: 2790–2794.
57 57 Suenage, K. and Koshino, M. (2012). Atom-by-atom spectroscopy at graphene edge. Nature 468: 1088–1090.
58 58