Amorphous Nanomaterials. Lin Guo
Чтение книги онлайн.
Читать онлайн книгу Amorphous Nanomaterials - Lin Guo страница 29
59 59 Suenaga, K., Sato, Y., Liu, Z. et al. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 1: 415–418.
60 60 Meyer, J.C., Kisielowski, C., Erni, R. et al. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8: 3582–3586.
61 61 Ramasse, Q.M., Seabourne, C.R., Kepaptsogloum, D.M. et al. (2013). Probing the bonding and electronic structure of single atom dopants in grapheme with electron energy loss spectroscopy. Nano Lett. 13: 4989–4995.
62 62 Andrews, S.B., Leapman, R.D., Landis, D.M., and Reese, T.S. (1987). Distribution of calcium and potassium in presynaptic nerve terminals from cerebellar cortex. Proc. Natl Acad. Sci. U S A 84: 1713–1717.
63 63 Gloter, A., Suenaga, K., Kataura, H. et al. (2004). Structural evolutions of carbon nano-peapods under electron microscopic observation. Chem. Phys. Lett. 390: 462–466.
64 64 Hunt, J.A. and Williams, D.B. (1991). Electron energy-loss spectrum-imaging. Ultramicroscopy 38: 47–73.
65 65 Bosman, M., Keast, V., Garcia-Munoz, J. et al. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99: 86102.
66 66 Krivanek, O.L., Corbin, G.J., Dellby, N. et al. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108: 179–195.
67 67 Egerton, F.R. (1975). Inelastic scattering of 80 keV electrons in amorphous carbon. Philos. Mag. 31: 199–215.
68 68 Egerton, F.R. (2002). Improved background-fitting algorithms for ionization edges in electron energy-loss spectra. Ultramicroscopy 92: 47–56.
69 69 Huang, J.Y., Zhong, L., Wang, C.M. et al. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330: 1515–1520.
70 70 Yuan, Y., Nie, A., Odegard, G.M. et al. (2015). Asynchronous crystal cell expansion during lithiation of K+-stabilized α–MnO2. Nano Lett. 15: 2998–3007.
71 71 Poizot, P., Larulle, S., Grugeon, S. et al. (2000). Nano-sized transition-metal oxides as negative-electrode materials for the lithium-ion batteries. Nature 407: 496–499.
72 72 He, K., Zhang, S., Li, J. et al. (2016). Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nat. Commun. 7: 11441.
73 73 Su, Q., Xie, D., Zhang, J. et al. (2013). In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/grapheme anode during lithiation-delithiation processes. ACS Nano 7: 6354–6360.
74 74 Muralidharan, N., Brock, C.N., Cohn, A.P. et al. (2017). Tunable mechanochemistry of lithium battery electrodes. ACS Nano 11: 6243–6251.
75 75 Qian, J., Xiong, Y., Cao, Y. et al. (2014). Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 14: 1865–1869.
76 76 Li, Q., Wei, Q., Zuo, W. et al. (2016). Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 8: 160–164.
77 77 Zhou, J., Chen, J., Chen, M. et al. (2019). Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries. Adv. Mater. 31: 1807874.
78 78 Deng, L., Yang, Z., Tan, L. et al. (2018). Investigation of the prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv. Mater. 30: 1802510.
79 79 Niu, X., Zhang, Y., Tan, L. et al. (2019). Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater. 22: 160–167.
80 80 Zeng, Z., Liang, W.I., Liao, H.G. et al. (2014). Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14: 1745–1750.
81 81 Egerton, R., Li, P., and Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35: 399–409.
82 82 Liu, X.H., Liu, Y., Kushima, A. et al. (2012). In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2: 722–741.
83 83 Abellan, P., Mehdi, B.L., Parent, L.R. et al. (2014). Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14: 1293–1299.
84 84 Yuan, Y., Wood, S.M., He, K. et al. (2016). Atomistic insights into the oriented attachment of tunnel-based oxide nanostructures. ACS Nano 10: 539–548.
85 85 Leenheer, A.J., Jungjohann, K.L., Zavadil, K.R. et al. (2015). Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9: 4379–4389.
86 86 Holtz, M.E., Yu, Y., Gunceler, D. et al. (2014). Nanoscale imaging of lithium ion distribution during in situ operation of a battery electrode and electrolyte. Nano Lett. 14: 1453–1459.
87 87 Simonsen, S.B., Chorkendorff, I., Dahl, S. et al. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132: 7968–7975.
88 88 Kinke, C., Bonard, J.M., and Kern, K. (2004). Formation of metallic nanocrystals from gel-like precursor films for CVD nanotube growth: an in situ TEM characterization. J. Phys. Chem. B 108: 11357–11360.
89 89 Zhang, L., Miller, B.K., and Crozier, P.A. (2013). Atomic level in situ observation of surface amorphization in anatase photocatalyst during light irradiation in water vapor. Nano Lett. 13: 679–684.
90 90 Somorjai, Y.L.G.A. (2010). Introduction to Surface Chemistry and Catalysis. New York: Wiley.
91 91 Hansen, P.L., Wagner, J.B., Helveg, S. et al. (2002). Atomic-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295: 2053–2055.
92 92 Yoshida, H., Kuwauchi, Y., Jinschek, J.R. et al. (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335: 317–319.
93 93 Yoshida, H. and Takeda, S. (2005). Image formation in a transmission electron microscope equipped with an environment cell: single-walled carbon nanotube in source gases. Phys. Rev. B 72: 195428.
94 94 Suzuki, M., Yaguchi, T., and Zhang, X.F. (2013). High-resolution environmental transmission electron microscopy: modeling and experimental verification. Microscopy 62: 437–450.
95 95 Pastina, B. and LaVerne, J.A. (2001). Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A 105: 9316–9322.
96 96 Joseph, J.M., Seon Choi, B., Yakabuskie, P., and Clara Wren, J. (2008). A combined experimental and model analysis on the effect of pH and O2 (aq) on γ-radiolytically produced H2 and H2O2. Radiat. Phys. Chem. 77: 1009–1020.
97 97 Remita, H., Lampre, I., Mostafavi, M. et al. (2005). Comparative study of metal clusters induced in aqueous solutions by γ-rays, electron or C6+ ion beam irradiation. Radiat. Phys. Chem. 72: 575–586.
98 98 Zheng, H.M., Smith, R.K., Jun, Y.W. et al. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324: 1309–1312.
99 99 Liao, H.G., Cui,