Networking All-in-One For Dummies. Doug Lowe

Чтение книги онлайн.

Читать онлайн книгу Networking All-in-One For Dummies - Doug Lowe страница 48

Networking All-in-One For Dummies - Doug Lowe

Скачать книгу

applications to request network services.

      The following sections describe each of these layers in greater detail.

      

The seven layers of the OSI model are a somewhat idealized view of how networking protocols should work. In the real world, actual networking protocols don’t follow the OSI model to the letter. The real world is always messier. Still, the OSI model provides a convenient — if not completely accurate — conceptual picture of how networking works.

      The physical layer

      The bottom layer of the OSI model is the physical layer. It addresses the physical characteristics of the network, such as the types of cables used to connect devices, the types of connectors used, how long the cables can be, and so on. For example, Ethernet spells out the exact Layer 1 requirements for twisted-pair cables that can be used at various speeds — 100 Mbps, 1 Gbps, 10 Gbps, and even faster. The star, bus, ring, and mesh network topologies described in Book 1, Chapter 2 apply to the physical layer.

      One type of physical layer device commonly used in networks is a repeater, which is used to regenerate the signal whenever you need to exceed the cable length allowed by the physical layer standard. In the old days, we used to use physical layer devices called hubs to split an Ethernet segment to multiple devices. Technically, hubs are known as multiport repeaters because the purpose of a hub is to regenerate every packet received on any port on all the hub’s other ports. Repeaters and hubs don’t examine the contents of the packets that they regenerate, though. If they did, they would be working at the data link layer, and not at the physical layer.

Snapshot of the Properties dialog box for a network adapter.

      FIGURE 1-1: The Properties dialog box for a network adapter.

Windows 10 seems to bury some of the most useful settings pages, making them difficult to find. Even the incredibly useful Control Panel can be a chore to find. I suggest you pin the Control Panel to both the Start menu and the taskbar. You can find the Control Panel by pressing the Windows key, typing Control Panel, right-clicking the Control Panel icon, and choosing both Pin to Start and Pin to Taskbar so the Control Panel will always be readily available.

      While you’re at it, switch Control Panel from Category view to Small Icons view. This step will eliminate a lot of extra navigation trying to get to the settings pages you need. For example, in Small Icons view, you can go directly from Control Panel to Network and Sharing Center without first having to open the Network and Internet link.

      The data link layer

      The data link layer is the lowest layer at which meaning is assigned to the bits that are transmitted over the network. Data link protocols address things such as the size of each packet of data to be sent, a means of addressing each packet so that it’s delivered to the intended recipient, and a way to ensure that two or more nodes don’t try to transmit data on the network at the same time.

      The data link layer also provides basic error detection and correction to ensure that the data sent is the same as the data received. If an uncorrectable error occurs, the data link standard must specify how the node is to be informed of the error so that it can retransmit the data.

      At the data link layer, each device on the network has an address: the MAC address. This address is hard-wired into every network device by the manufacturer. MAC addresses are unique; no two network devices made by any manufacturer anywhere in the world can have the same MAC address.

      

One of the most import functions of the data link layer is to provide a way for packets to be sent safely over the physical media without interference from other nodes attempting to send packets at the same time. The two most popular ways to do this are CSMA/CD and token passing. (Take a deep breath. CSMA/CD stands for Carrier Sense Multiple Access/Collision Detection.) Ethernet networks use CSMA/CD, and token ring networks use token passing.

Snapshot of displaying the MAC address of a network adapter.

      FIGURE 1-2: Display the MAC address of a network adapter.

       Bridge: An intelligent repeater that's aware of the MAC addresses of the nodes on either side of the bridge and can forward packets accordingly.

       Switch: An intelligent hub that examines the MAC address of arriving packets to determine which port to forward the packet to.

      Another important layer 2 concept is the idea of virtual local area networks (VLANs). VLANs allow you to create separate isolated networks that share devices. For example, you can create separate VLANs for your accounting and sales departments, but use the same switch to connect computers in each VLAN. Computers in the account VLAN won't be able to communicate with computers in the sales VLAN, even though the computers are on the same switch.

      The network layer

      The network layer handles the task of routing network messages from one computer to another. The two most popular layer 3 protocols are IP (which is usually paired with TCP) and IPX (typically paired with SPX for use with Novell and Windows networks).

      Network layer protocols provide two important functions: logical addressing and routing. The following sections describe these functions.

Скачать книгу