Soil Bioremediation. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Soil Bioremediation - Группа авторов страница 12

Soil Bioremediation - Группа авторов

Скачать книгу

Miertus, S. (2001). Overview of remediation technologies for persistent toxic substances. Archives of Industrial Hygien and Toxicology 52: 253–280.

      7 7 Scullion, J. (2006). Remediating polluted soils. Naturwissenschaften 93: 51–65.

      8 8 Shannon, M.J. and Unterman, R. (1993). Evaluating bioremediation: distinguishing fact from fiction. Annual Review of Microbiology 47: 715–738.

      9 9 Snellinx, Z., Nepovim, A., Taghavi, S. et al. (2002). Biological remediation of explosives and related nitroaromatic compounds. Environmental Science and Pollution Research International 9: 48–61.

      10 10 Lovley, D.R. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nature Reviews Microbiology 1: 35–44.

      11 11 Diaz, E. (2004). Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. International Microbiology 7: 173–180.

      12 12 Parales, R.E. and Haddock, J.D. (2004). Biocatalytic degradation of pollutants. Current Opinion in Biotechnology 15: 374–379.

      13 13 Nojiri, H. and Tsuda, M. (2005). Functional evolution of bacteria in degradation of environmental pollutants. Tanpakushitsu Kakusan Koso 50: 1505–1509.

      14 14 Janssen, D.B., Dinkla, I.J., Poelarends, G.J. et al. (2005). Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environmental Microbiology 7: 1868–1882.

      15 15 Zhang, J., Zhang, H., Li, X. et al. (2006). Soil microbial ecological process and microbial functional gene diversity. Ying Yong Sheng Tai Xue Bao 17: 1129–1132.

      16 16 Arai, H., Ohishi, T., Chang, M.Y. et al. (2000). Arrangement and regulation of the genes for meta‐pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146: 1707–1715.

      17 17 Solyanikova, I.P. and Golovleva, L.A. (2004). Bacterial degradation of chlorophenols: pathways, biochemical and genetic aspects. Journal of Environmental Science and Health 39: 333–351.

      18 18 Symons, Z.C. and Bruce, N.C. (2006). Bacterial pathways for degradation of nitroaromatics. Natural Product Reports 23: 845–850.

      19 19 Heidelberg, J.F., Paulsen, I.T., and Nelson, K.E. (2002). Genome sequence of the dissimilatory metal ion‐reducing bacterium Shewanella oneidensis. Nature Biotechnology 20: 1118–1123.

      20 20 Golyshin, P.N., Martins Dos Santos, V.A., and Kaiser, O. (2003). Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon‐degrading bacterium that plays a global role in oil removal from marine systems. Journal of Biotechnology 106: 215–220.

      21 21 Rabus, R. (2005). Functional genomics of an anaerobic aromatic‐degrading denitrifying bacterium, strain EbN1. Applied Microbiology and Biotechnology 68: 580–587.

      22 22 Zhao, B. and Poh, C.L. (2008). Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8: 874–881.

      23 23 Thompson, I.P., van der Gast, C.J., Ciric, L. et al. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology 7: 909–915.

      24 24 Vinas, M., Sabate, J., Guasp, C. et al. (2005). Culture‐dependent and ‐independent approaches establish the complexity of a PAH‐degrading microbial consortium. Canadian Journal of Microbiology 51: 897–909.

      25 25 Dinkla, I.J., Gabor, E.M., and Janssen, D.B. (2001). Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Environmental Microbiology 67: 3406–3412.

      26 26 Kim, H.J. and Graham, D.W. (2003). Effects of oxygen and nitrogen conditions on the transformation kinetics of 1,2‐dichloroethenes by Methylosinus trichosporium OB3b and its sMMOC mutant. Biodegradation 14: 407–414.

      27 27 Lovanh, N., Hunt, C.S., and Alvarez, P.J. (2002). Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Research 36: 3739–3746.

      28 28 Zhou, Q., Zhang, J., Fu, J. et al. (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta 606: 135–150.

      29 29 Purohit, H.J., Raje, D.V., Kapley, A. et al. (2003). Genomics tools in environmental impact assessment. Environmental Science and Technology 37: 356A–363A.

      30 30 Paul, D., Pandey, G., Meier, C. et al. (2006). Bacterial community structure of a pesticide‐contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology 57: 116–127.

      31 31 Verma, J.P. and Jaiswal, D.K. (2016). Book review: advances in biodegradation and bioremediation of industrial waste. Frontiers in Microbiology 6: 1–2.

      32 32 Frutos, F.J.G., Pérez, R., Escolano, O. et al. (2012). Remediation trials for hydrocarbon‐contaminated sludge from a soil washing process: evaluation of bioremediation technologies. Journall of Hazardous Materials 199: 262–271.

      33 33 Smith, E., Thavamani, P., Ramadass, K. et al. (2015). Remediation trials for hydrocarbon‐contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. International Biodeterioration and Biodegradation 101: 56–65.

      34 34 Fruchter, J. (2002). In situ treatment of chromium‐contaminated groundwater. Environmental Science and Technology 36: 464A–472A.

      35 35 Farhadian, M., Vachelard, C., Duchez, D. et al. (2007). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology 99: 5296–5308.

      36 36 Jorgensen, K.S. (2007). In situ bioremediation. Advances in Applied Microbiology 61: 285–305.

      37 37 Carberry, J.B. and Wik, J. (2001). Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated by petroleum. Journal of Environmental Science and Health 36: 1491–1503.

      38 38 Prpich, G.P., Adams, R.L., and Daugulis, A.J. (2006). Ex‐situ bioremediation of phenol‐contaminated soil using polymer beads. Biotechnology Letters 28: 2027–2031.

      39 39 Kim, S.J., Park, J.Y., Lee, Y.J. et al. (2005). Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory‐prepared pentadecane contaminated kaolinite. Journal of Hazardous Materials 118: 171–176.

      40 40 Bouwer, E., Durant, N., Wilson, L. et al. (1994). Degradation of xenobiotic compounds in situ: capabilities and limits. FEMS Microbiology Reviews 15: 307–317.

      41 41 Romantschuk, M., Sarand, I., and Petanen, T. (2000). Means to improve the effect of in‐situ bioremediation of contaminated soil: an overview of novel approaches. Environmental Pollution 107: 179–185.

      42 42 Mandelbaum, R.T., Shati, M.R., and Ronen, D. (1997). In situ microcosms in aquifer bioremediation studies. FEMS Microbiology Reviews 20: 489–502.

      43 43 Schmidt, B.F., Chao, J., Zhu, Z. et al. (1997). Signal amplification in the detection of single‐copy DNA and RNA by enzyme‐catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29‐tyramide. Journal of Histochemistry and Cytochemistry 45: 365–373.

      44 44 Scow, K.M. and Hicks, K.A. (2005). Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology 16: 246–253.

      45 45 Janikowski, T.B., Velicogna,

Скачать книгу