Soil Bioremediation. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Soil Bioremediation - Группа авторов страница 13

Soil Bioremediation - Группа авторов

Скачать книгу

and Biotechnology 59: 368–376.

      46 46 Di Gennaro, P., Collina, E., Franzetti, A. et al. (2005). Bioremediation of diethylhexyl phthalate contaminated soil: a feasibility study in slurry‐ and solid‐phase reactors. Environmental Science and Technology 39: 325–330.

      47 47 Omenn, G.S. (1992). Environmental biotechnology: biotechnology solutions for a global environmental problem, hazardous chemical wastes. Asia Pacific Journal of Public Health 6: 40–45.

      48 48 Robles‐Gonzalez, I.V., Fava, F., and Poggi‐Varaldo, H.M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories 7: 5–17.

      49 49 Kao, C.M., Chen, S.C., Wang, J.Y. et al. (2003). Remediation of PCE‐contaminated aquifer by an in situ two‐layer biobarrier: laboratory batch and column studies. Water Resources 37: 27–38.

      50 50 Glover, K.C., Munakata‐Marr, J., and Illangasekare, T.H. (2007). Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology. Environmental Science and Technology 41: 1384–1389.

      51 51 El Fantroussi, S. and Agathos, S.N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinions in Microbiolgy 8: 268–275.

      52 52 van der Gast, C.J., Whiteley, A.S., and Thompson, I.P. (2004). Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal‐working fluid. Environmental Microbiology 6: 254–263.

      53 53 Roane, T.M., Josephson, K.L., and Pepper, I.L. (2001). Dual‐bioaugmentation strategy to enhance remediation of co‐contaminated soil. Applied Environmental Microbiology 67: 3208–3215.

      54 54 Ledin, M. (2000). Accumulation of metals by microorganisms – processes and importance for soil systems. Earth Science Reviews 51: 1–31.

      55 55 Rahman, K.S.M., Banat, I.M., Thahira, J. et al. (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant. Bioresource Technology 81: 25–32.

      56 56 Nyer, E.K., Payne, F., and Suthersan, S. (2002). Environment vs. bacteria or let's play “name that bacteria”. Ground Water Monitoring and Remediation 23: 36–45.

      57 57 Alisi, C., Musella, R., Tasso, F. et al. (2009). Bioremediation of diesel oil in a cocontaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Science of the Total Environment 407: 3024–3032.

      58 58 Li, X.J., Lin, X., Li, P.J. et al. (2009). Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. Journal of Hazardous Materials 172: 601–605.

      59 59 Gentry, T.J., Rensing, C., and Pepper, I.L. (2004). New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology 34: 447–494.

      60 60 Goldstein, R.M., Mallory, L.M., and Alexander, M. (1985). Reasons for possible failure of inoculation to enhance biodegradation. Applied Environmental Microbiology 50: 977–983.

      61 61 Leahy, J.G. and Colwell, R.R. (1990). Microbial‐degradation of hydrocarbons in the environment. Microbiologial Reviews 54: 305–315.

      62 62 Mishra, S., Jyot, J., Kuhad, R.C. et al. (2001). In situ bioremediation potential of an oily sludge‐degrading bacterial consortium. Current Microbiology 43: 328–335.

      63 63 Moslemy, P., Neufeld, R.J., and Guiot, S.R. (2002). Biodegradation of gasoline by gellan gum‐encapsulated bacterial cells. Biotechnology and Bioengineering 80: 175–184.

      64 64 Obuekwe, C.O. and Al‐Muttawa, E.M. (2001). Self‐immobilized bacterial cultures with potential for application as ready‐to‐use seeds for petroleum bioremediation. Biotechnology Letters 23: 1025–1032.

      65 65 McLoughlin, A.J. (1994). Controlled release of immobilized cells as a strategy to regulate ecological competence of inocula. In: Biotechnics/Wastewater (ed. T. Scheper), 1–45. Berlin: Springer.

      66 66 Cassidy, M.B., Lee, H., and Trevors, J.T. (1996). Environmental applications of immobilized microbial cells: a review. Journal of Industrial Microbiology and Biotechnology 16: 79–101.

      67 67 vanVeen, J.A., vanOverbeek, L.S., and vanElsas, J.D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews 61: 121–135.

      68 68 Bouchez, T., Patureau, D., Dabert, P. et al. (2000). Ecological study of a bioaugmentation failure. Environmental Microbiology 2: 179–190.

      69 69 Dibble, J.T. and Bartha, R. (1979). Effect of environmental parameters on the biodegradation of oil sludge. Applied Environmental Microbiology 37: 729–739.

      70 70 Atlas, R.M. (1995). Bioremediation of petroleum pollutants. International Biodeterioration and Biodegradation 35: 317–327.

      71 71 Delille, D., Delille, B., and Pelletier, E. (2002). Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microbial Ecology 44: 118–126.

      72 72 Nikolopoulou, M. and Kalogerakis, N. (2009). Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. Journal of Chemical Technology and Biotechnology 84: 802–807.

      73 73 Sarkar, D., Ferguson, M., Datta, R. et al. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution 136: 187–195.

      74 74 Sugai, S.F., Lindstrom, J.E., and Braddock, J.F. (1997). Environmental influences on the microbial degradation of Exxon Valdez oil on the shorelines of Prince William Sound, Alaska. Environmental Science and Technology 31: 1564–1572.

      75 75 Mulkins‐Phillips, G.J. and Stewart, J.E. (1974). Effect of environmental parameters on bacterial‐degradation of bunker‐C oil, crude oils, and hydrocarbons. Applied Microbiology 28: 915–922.

      76 76 Horel, A. and Schiewer, S. (2009). Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Regions Science and Technology 58: 113–119.

      77 77 Bordoloi, N.K. and Konwar, B.K. (2009). Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. Journal of Hazardous Materials 170: 495–505.

      78 78 Ron, E.Z. and Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology 13: 249–252.

      79 79 Baek, K.H., Yoon, B.D., Kim, B.H. et al. (2007). Monitoring of microbial diversity and activity during bioremediation of crude OH‐contaminated soil with different treatments. Journal of Microbiology and Biotechnology 17: 67–73.

      80 80 Hamdi, H., Benzarti, S., Manusadzianas, L. et al. (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology and Biochemistry 39: 1926–1935.

      81 81 Hankard, P.K., Svendsen, C., Wright, J. et al. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Science of the Total Environment 330: 9–20.

      82 82 Bento, F.M., Camargo, F.A.O., Okeke, B.C. et al. (2005). Comparative bioremediation of soils contaminated with diesel oil

Скачать книгу