Soil Bioremediation. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Soil Bioremediation - Группа авторов страница 20

Soil Bioremediation - Группа авторов

Скачать книгу

F., Kampichler, C., and Horak, O. (1996). Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils 23 (3): 299–306.

      34 34 Wang, Y., Shi, J., Wang, H. et al. (2007). The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety 67 (1): 75–81.

      35 35 Fließbach, A., Martens, R., and Reber, H.H. (1994). Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry 26 (9): 1201–1205.

      36 36 Chander, K. and Brookes, P.C. (1991). Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam U.K. soil. Soil Biology and Biochemistry 23 (10): 927–932.

      37 37 Weng, L., Temminghoff, E., Lofts, S. et al. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a Sandy soil. Environmental Science & Technology 36 (22): 4804–4810.

      38 38 Valsecchi, G., Gigliotti, C., and Farini, A. (1995). Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biology and Fertility of Soils 20 (4): 253–259.

      39 39 Reuter, J.H. and Perdue, E.M. (1977). Importance of heavy metal‐organic matter interactions in natural waters. Geochimica et Cosmochimica Acta 41 (2): 325–334.

      40 40 Brookes, P.C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils 19 (4): 269–279.

      41 41 Clemente, R., Escolar, Á., and Bernal, M.P. (2006). Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials. Bioresource Technology 97 (15): 1894–1901.

      42 42 Barceló, J. and Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition 13 (1): 1–37.

      43 43 Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8 (3): 199–216.

      44 44 Påhlsson, A.‐M.B. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution 47 (3): 287–319.

      45 45 Schützendübel, A. and Polle, A. (2002). Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53 (372): 1351–1365.

      46 46 Ernst, W.H.O. (1996). Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry 11 (1): 163–167.

      47 47 Vinodhini, R. and Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). International Journal of Environmental Science and Technology 5 (2): 179–182.

      48 48 Khan, S., Cao, Q., Zheng, Y.M. et al. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution 152 (3): 686–692.

      49 49 Ma, J., Ding, Z., Wei, G. et al. (2009). Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. Journal of Environmental Management 90 (2): 1168–1177.

      50 50 Castro‐González, M.I. and Méndez‐Armenta, M. (2008). Heavy metals: implications associated to fish consumption. Environmental Toxicology and Pharmacology 26 (3): 263–271.

      51 51 Wang, Q. and Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution 218: 358–365.

      52 52 Cheng, S. (2003). Heavy metal pollution in China: origin, pattern and control. Environmental Science and Pollution Research 10 (3): 192–198.

      53 53 Uversky, V.N., Li, J., and Fink, A.L. (2001). Metal‐triggered structural transformations, aggregation, and fibrillation of human α‐Synuclein: a possible molecular link between Parkinson's disease and heavy metal exposure. Journal of Biological Chemistry 276 (47): 44284–44296.

      54 54 Muchuweti, M., Birkett, J.W., Chinyanga, E. et al. (2006). Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health. Agriculture, Ecosystems & Environment 112 (1): 41–48.

      55 55 Zhuang, P., McBride, M.B., Xia, H. et al. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment 407 (5): 1551–1561.

      56 56 Singh, A., Sharma, R.K., Agrawal, M. et al. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology 48 (2): 611–619.

      57 57 Mahmood, A. and Malik, R.N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry 7 (1): 91–99.

      58 58 Fowler, B.A. (2013). Biological and Environmental Effects of Arsenic, vol. 6. Amsterdam: Elsevier.

      59 59 Marin, A., Pezeshki, S.R., Masschelen, P.H. et al. (1993). Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. Journal of Plant Nutrition 16 (5): 865–880.

      60 60 Burlo, F., Guyarro, I., Carbonell‐Barrachina, A.A. et al. (1999). Arsenic species: effects on and accumulation by tomato plants. Journal of Agricultural and Food Chemistry 47 (3): 1247–1253.

      61 61 Stoeva, N., Berova, M., and Zlatev, Z. (2005). Effect of arsenic on some physiological parameters in bean plants. Biologia Plantarum 49 (2): 293–296.

      62 62 Sun, H.‐J., Rathinasabapathi, B., Wu, B. et al. (2014). Arsenic and selenium toxicity and their interactive effects in humans. Environment International 69: 148–158.

      63 63 Banerjee, M., Banerjee, N., Bhattacharjee, P. et al. (2013). High arsenic in rice is associated with elevated genotoxic effects in humans. Scientific Reports 3: 2195.

      64 64 Abernathy, C.O., Liu, Y.P., Longfellow, D. et al. (1999). Arsenic: health effects, mechanisms of actions, and research issues. Environmental Health Perspectives 107 (7): 593.

      65 65 Mergler, D., Anderson, H.A., Chan, L.H. et al. (2007). Methylmercury exposure and health effects in humans: a worldwide concern. Ambio: A Journal of the Human Environment 36 (1): 3–11.

      66 66 Sun, H.J., Xiang, P., Luo, J. et al. (2016). Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: a review. Environment International 95: 61–68.

      67 67 Guo, P., Qi, Y.‐P., Cai, Y.,.‐T. et al. (2018). Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance. Tree Physiology 38 (10): 1548–1565.

      68 68 Khan, A., Khan, S., Khan, M.A. et al. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research 22 (18): 13772–13799.

      69 69 Mišík, M., Burke, I.T., Reismüller, M. et al. (2014). Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Science of the Total Environment 493: 883–890.

      70 70

Скачать книгу