Kuidas mõista andmestunud maailma. Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,

Чтение книги онлайн.

Читать онлайн книгу Kuidas mõista andmestunud maailma - Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek, страница 16

Kuidas mõista andmestunud maailma - Anto Aasa, Mare Ainsaar, Mai Beilmann, Marju Himma Muischnek,

Скачать книгу

59–64. https://doi.org/10.1038/s41586-018-0637-6.

      Balogun, J.; Johnson, G. 2005. From intended strategies to unintended outcomes: The impact of change recipient sensemaking. – Organization Studies 26,11, 1573–1601.

      Bansak, K.; Ferwerda, J.; Hainmueller, J.; Dillon, A.; Hangartner, D.; Lawrence, D.; Weinstein, J. 2018. Improving refugee integration through data-driven algorithmic assignment. – Science 359 (6373), 325–329. https://doi.org/10.1126/science.aao4408.

      Bartunek, J. M.; Rousseau, D. M., Rudolph, J. W.; DePalma, J. A. 2006. On the receiving end: Sensemaking, emotion, and assessments of an organizational change initiated by others. – The Journal of Applied Behavioral Science 42, 2, 182–206.

      Bednar, P.; Green, G. 2011. Same business same system? A critique of organization and the information systems process. – Journal of Organisational Transformation and Social Change 8, 2, 199–213.

      Beer, M.; Nohria, N. 2000. Cracking the code of change. – Harvard Business Review. https://hbr.org/2000/05/cracking-the-code-of-change.

      Bibri, S. E. 2018. Backcasting in futures studies: a synthesized scholarly and planning approach to strategic smart sustainable city development. – European Journal of Futures Research 6, 13, .

      Blalock, H. M. (ed.) 1974. Measurement in the social sciences: Theories and strategies. Chicago: Aldine.

      Bolhuis, E.; Schildkamp, K.; Voogt, J. 2016. Data-based decision making in teams: enablers and barriers. – Educational Research and Evaluation 22, 3/4, 213–233. doi:10.1080/13803611.2016.1247728.

      Bonhomme, M.; Markon, S.; Yoshida, C. 2018. Data analytics for improving public service delivery. – IEEE International Conference on Applied System Invention, 778–781.

      Bouckenooghe, D. 2010. Positioning change recipients’ attitudes toward change in the organizational change literature. – The Journal of Applied Behavioral Science 46,4, 500–531.

      Browne, L.; Rayner, S. 2015. Managing Leadership in University Reform: Data-Led Decision-Making, the Cost of Learning and Déjà Vu? – Educational Management Administration & Leadership 43, 2, 290–307.

      Bryman, A. 2015. Social research methods. 5th ed. Oxford University Press.

      Brynjolfsson, E.; Hitt, L. M.; Kim, H. H. 2011. Strength in numbers: How does data driven decision making affect firm performance. April 22, 2011. SSRN: http://papers.ssm.com/sol3/papers.cfm?abstract_id-1819486.

      Cagnin, C.; Havas, A.; Saritas, O. 2013. Future-oriented technology analysis: Its potential to address disruptive transformations. – Technological Forecasting and Social Change 80, 3, 379–560.

      Choi, M. 2011. Employees’ attitudes toward organizational change: A literature review. – Human Resource Management 50, 4, 479–500.

      Comuzzi, M.; Parhizkar, M. 2017. A methodology for enterprise systems post-implementation change management. – Industrial Management and Data Systems 117, 10, 2241–2262.

      Couldry, N.; Meijas, U. 2018. Data Colonialism: Rethinking Big Data’s Relation to the Contemporary Subject. – Television and New Media, 1–14.

      COVID-19 Community Mobility Report. https://www.gstatic.com/covid19/mobility/2020-03-29_EE_Mobility_Report_en.pdf (07.05.20).

      Creswell, J. W.; Creswell, J. D. 2018. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 5th ed. Los Angeles: Sage.

      Dencik, L.; Hintz, A.; Redden, J.; Treré, E. 2019. Exploring Data Justice: Conceptions, Applications and Directions. – Information, Communication and Society 22, 7, 873–881. https://doi.org/10.1080/1369118X.2019.1606268.

      Drechsler, W. 2019. Kings and Indicators: Options for Governing Without Numbers. – M. J. Prutsch (ed.), Science, Numbers and Politics. Springer International Publishing, 227–262. https://doi.org/10.1007/978-3-030-11208-0_11.

      Drew, C. 2018. Design for data ethics: using service design approaches to operationalize ethical principles on four projects. – Philosophical Transactions, Series A: Mathematical, Physical, and Engineering Sciences, Sep 13, 376. doi:10.1098/rsta.2017.0353.

      Eubanks, V. 2018. Automating inequality: How high-tech tools profile, police, and punish the poor. 1st ed. St. Martin’s Press.

      Ferguson, A. G. 2017. The Rise of Big Data Policing: Surveillance, Race, and the Future of Law Enforcement. NYU Press.

      Fisher, C. B.; Anushko, A. E. 2012. Research ethics is social science. – P. Alasuutari, L. Bickman, J. Brown (eds.), The Sage Handbook of Social Research Methods. London: Sage, 95–110.

      Fox, J.; Gutenstein, M.; Khan, O.; South, M.; Thomson, R. 2015. OpenClinical.net: A platform for creating and sharing knowledge and promoting best practice in healthcare. – Computers in Industry 66, 63–72.

      Gates, A. J.; Wood, I. B., Hetrick, W. P.; Ahn, Y.-Y. 2019. Element-centric clustering comparison unifies overlaps and hierarchy. – Scientific Reports 9, 1, 1–13. https://doi.org/10.1038/s41598-019-44892-y.

      Grechuk, B.; Zabarankin, M. 2018. Direct Data-based Decision Making under Uncertainty. – European Journal of Operational Research 267, 1, 200–211.

      Haardörfer, R. 2019. Taking Quantitative Data Analysis Out of the Positivist Era: Calling for Theory-Driven Data-Informed Analysis. – Health Education and Behavior 46, 4, 537–540. https://doi.org/10.1177/1090198119853536.

      Hargittai, E. 2020. Potential Biases in Big Data: Omitted Voices on Social Media. – Social Science Computer Review 38, 1, 10–24. https://doi.org/10. 1177/0894439318788322.

      Heckmann, N.; Steger, T.; Dowling, M. 2016. Organizational capacity for change, change experience, and change project performance. – Journal of Business Research 69, 2, 777–784.

      Helbig, N.; Cresswell, A. M., Burke, G. B.; Luna-Reyes, L. 2012. The Dynamics of Opening Government Data: A White Paper. Center for Technology in Government, The Research Foundation of State University of New York, Albany. https://ctg.albany.edu/media/pubs/pdfs/opendata.pdf.

      Heymann, M. 2018. How the service industry can corral big data into a business‐building tool. – Global Business and Organizational Excellence 37, 5, 39–46.

      Hoffmann, A. L. 2019. Where fairness fails: Data, algorithms, and the limits of antidiscrimination discourse. – Information, Communication and Society 22, 7, 900–915. https://doi.org/10.1080/1369118X.2019.1573912.

      Holmberg, J.; Robèrt, K. E. 2000. Backcasting

Скачать книгу