The Handbook of Speech Perception. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу The Handbook of Speech Perception - Группа авторов страница 55

The Handbook of Speech Perception - Группа авторов

Скачать книгу

B. (1997). Auditory neural processing of speech. In W. J. Hardcastle & J. Laver (Eds.), The handbook of phonetic sciences (pp. 507–538). Oxford: Blackwell.

      19 Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning‐induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107, 539–551.

      20 Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453, 1102–1106.

      21 Engineer, C. T., Perez, C. A., Chen, Y. H., et al. (2008). Cortical activity patterns predict speech discrimination ability. Nature Neuroscience, 11, 603–608.

      22 Ferry, R. T., & Meddis, R. (2007). A computer model of medial efferent suppression in the mammalian auditory system. Journal of the Acoustical Society of America, 122, 3519–3526.

      23 Firth, J. (1957). Papers in linguistics, 1934–1951. Oxford: Oxford University Press.

      24 Flinker, A., Chang, E. F., Kirsch, H. E., et al. (2010). Single‐trial speech suppression of auditory cortex activity in humans. Journal of Neuroscience, 30, 16643–16650.

      25 Fowler, C. A. (1986). An event approach to the study of speech perception from a direct‐realist perspective. Journal of Phonetics, 14, 3–28.

      26 Frisina, R. D. (2001). Subcortical neural coding mechanisms for auditory temporal processing. Hearing Research, 158(1–2), 1–27.

      27  Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.

      28 Friston, K., & Kiebel, S. (2009). Predictive coding under the free‐energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1211–1221.

      29 Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task‐related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

      30 Garofolo, J. S., Lamel, L. F., Fisher, W. M., et al. (1993). TIMIT Acoustic‐Phonetic Continuous Speech Corpus. Linguistic Data Consortium, from https://catalog.ldc.upenn.edu/LDC93S1.

      31 Golding, N. L., & Oertel, D. (2012). Synaptic integration in dendrites: Exceptional need for speed. Journal of Physiology, 590, 5563–5569.

      32 Graves, A., & Jaitly, N. (2014). Towards end‐to‐end speech recognition with recurrent neural networks. In ICML’14: Proceedings of the 31st International Conference on Machine Learning, 32(2), 1764–1772.

      33 Greenberg, S. (2006). A multi‐tier framework for understanding spoken language. In S. Greenberg & W. A. Ainsworth (Ed.), Listening to speech: An auditory perspective (pp. 411–430). Mahwah, NJ: Lawrence Erlbaum.

      34 Grinn, S. K., Wiseman, K. B., Baker, J. A., & Le Prell, C. G. (2017). Hidden hearing loss? No effect of common recreational noise exposure on cochlear nerve response amplitude in humans. Frontiers in Neuroscience, 11, 465.

      35 Grose, J. H., Buss, E., & Hall, J. W. (2017). Loud music exposure and cochlear synaptopathy in young adults: Isolated auditory brainstem response effects but no perceptual consequences. Trends in Hearing, 21, 1–18.

      36 Heinz, M. G., Colburn, H. S., & Carney, L. H. (2002). Quantifying the implications of nonlinear cochlear tuning for auditory‐filter estimates. Journal of the Acoustical Society of America, 111, 996–1011.

      37 Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.

      38 Holst, E. von, & Mittelstaedt, H. (1950). Das eafferenzprinzip. Naturwissenschaften, 37, 464–476.

      39 Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50, 1202–1211.

      40 Huth, A. G., De Heer, W. A., Griffiths, T. L., et al. (2016). Natural speech reveals the semantic maps that tile the human cerebral cortex. Nature, 532, 453–458.

      41 Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.

      42 Johnsrude, I. S., Mackey, A., Hakyemez, H., et al. (2013). Swinging at a cocktail party: Voice familiarity aids speech perception in the presence of a competing voice. Psychological Science, 24, 1995–2004.

      43 Joris, P. X., Smith, P. H., & Yin, T. C. T. (1998). Coincidence detection in the auditory system: 50 years after Jeffress. Neuron, 21, 1235–1238.

      44 Jurafsky, D., & Martin, J. H. (2014). Speech and language processing. London: Pearson.

      45 Kawato, M., Hayakawa, H., & Inui, T. (1993). A forward‐inverse optics model of reciprocal connections between visual cortical areas. Network: Computation in Neural Systems, 4, 415–422.

      46 Kujawa, S. G., & Liberman, M. C. (2015). Synaptopathy in the noise‐exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330, 191–199.

      47 Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.

      48  Leonard, M. K., Baud, M. O., Sjerps, M. J., & Chang, E. F. (2016). Perceptual restoration of masked speech in human cortex. Nature Communications, 7, 13619.

      49 Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert‐Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431–461.

      50 Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 1–36.

      51 Meddis, R., & O’Mard, L. P. (2005). A computer model of the auditory‐nerve response to forward‐masking stimuli. Journal of the Acoustical Society of America, 117, 3787–3798.

      52 Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multitalker speech perception. Nature, 485, 233–236.

      53 Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343, 1006–1010.

      54 Mesgarani, N., David, S. V., Fritz, J. B., & Shamma, S. A. (2008). Phoneme representation and classification in primary auditory cortex. Journal of the Acoustical Society of America, 123, 899–909.

      55 Mitchell, T. M., Shinkareva, S. V., Carlson, A., et al. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320, 1191–1195.

      56 Müller‐Preuss, P., & Ploog, D. (1981). Inhibition of auditory cortical neurons during phonation. Brain Research, 215, 61–76.

      57 Mumford, D. (1992). On the computational architecture of the neocortex. Biological Cybernetics, 66, 241–251.

      58 Nelken, I., Bizley, J. K., Nodal, F. R., et al. (2008). Responses of auditory cortex to complex stimuli: Functional organization revealed using intrinsic optical signals. Journal of Neurophysiology, 99, 1928–1941.

      59 Parker Jones, O., Seghier, M. L., Duncan, K. J. K., et al. (2013). Auditory–motor interactions for the production of native and nonnative speech. Journal of Neuroscience, 33,

Скачать книгу