Evidence in Medicine. Iain K. Crombie

Чтение книги онлайн.

Читать онлайн книгу Evidence in Medicine - Iain K. Crombie страница 9

Evidence in Medicine - Iain K. Crombie

Скачать книгу

to provide sufficient participants to be able to draw firm conclusions. The researchers also made considerable efforts to ensure that the participants, and the clinicians measuring the outcomes, were unaware of which treatment the patients received. This prevented bias in the reporting of symptoms by participants, and by those recording the outcomes: in modern terminology, it was double blind.

      The landmark streptomycin trial in tuberculosis was followed by another study on pulmonary tuberculosis, published two years later [45]. It compared three treatments: streptomycin, another drug, para‐amino‐salicylic acid (PAS), and a combination of these two drugs. The same methodology was used as in the first streptomycin trial. The combination therapy had the best outcome, with streptomycin coming second. More importantly the combined treatment led to a much lower frequency of bacterial resistance to streptomycin. This study has been credited with leading to the maxim ‘never treat active tuberculosis with a single agent’, which is now the standard for managing this disease [46]. The clinical benefits apart, this set of four rigorous studies supported by the Medical Research Council inaugurated the era of high quality clinical trials.

      A more recent example of the importance of blinding is the evaluation of a surgical technique, internal‐mammary artery‐ligation, for the relief of angina symptoms. Several reports in the 1950s had claimed that the operation provided considerable relief of symptoms [49, 50]. This prompted two groups of researchers to carry out controlled trials to evaluate the effectiveness of the surgery. Patients were randomly allocated to have artery ligation, or to a control group which received a sham operation involving only a skin incision. The patients, and the cardiologists who evaluated the outcomes, were blind to treatment group. The ligation operation provided no benefit, as most patients in both the treatment group and in the control group reported significant improvement in symptoms [49, 50]. The authors concluded that these claims were most likely a psychological response to undergoing surgery.

      The response to a sham treatment is known as a placebo effect. Understanding of the psychological and physiological factors underlying the placebo response has advanced greatly in recent years [51, 52]. A consistent finding is that patients who have high expectations of their treatment usually experience improvements in symptoms. If patients were aware of their treatment allocation, only those in the active group would have the high expectations. Concealment of treatment allocation could prevent this bias from creating difference between the groups.

      Obtaining evidence on treatment effectiveness is a challenging business. As Passamani remarked in 1991, ‘The history of medicine is richly endowed with therapies that were widely used and then shown to be ineffective or frankly toxic’ [53]. A similar view was expressed by the celebrated American physician, Oliver Wendell Holmes in 1860, ‘if the whole materia medica, as now used, could be sunk to the bottom of the sea, it would be all the better for mankind – and all the worse for the fishes’ [54]. These may seem somewhat jaundiced views, but they reflect the large proportion of ineffective and possibly harmful treatments that were once used. Even in the early years of the twentieth century many ineffective treatments were widely used [55], and some treatments of little value continue to be used today [56]. Concern about this has led to a recent international campaign, ‘Choosing Wisely’, to reduce the use of ineffective or harmful treatments [57].

      This chapter has presented examples of different approaches used to identify potentially effective treatments. Reliance on theories of disease processes is often unreliable and can result in harmful treatments being used. Careful observation of treatment outcomes in a series of patients can, if the benefits are immediate and substantial, identify effective treatments. Comparisons of groups of patients given different treatments are often more insightful, but are vulnerable to the criticism that the groups might not be similar at baseline. As the eminent French physician P C A Louis pointed out in 1834, ‘it is necessary to account for differences of age, sex, temperament, physical condition, natural history of the disease’ [58]. The use of groups constructed to be similar on some factors at baseline is a definite improvement, but leaves open the question that they differ on other (unmeasured) factors. Allocation of individual patients to treatments using random numbers overcomes two problems: clinician bias in assigning patients to groups, and differences in unmeasured factors.

      In summary, this chapter has reviewed the development of methods to evaluate treatments up to the middle of the twentieth century. It has highlighted pitfalls of many of the earlier methods and concluded with an outline of the advantages of the double blind randomised controlled trial. This method is now used around the world to identify the benefits of treatments. Medicine now has the tools to ensure that only effective treatments are used. The next chapter explores whether the benefits of the randomised controlled trial have been realised.

      1 1. Porter, R. (1999). The Greatest Benefit to Mankind. London: Harpers Collins.

      2 2. Cantu, J.Q. (1965). Benjamin Franklin's medical imprints. Bull. Med. Libr. Assoc. 53: 71–79.

      3 3. Bhatt, A. (2010). Evolution of clinical research: a history before and beyond Lames Lind. Perspect. Clin. Res. 1: 6–10.

      4 4. Ackerknecht, E.H. (1982). A Short History of Medicine. Baltimore: Johns Hopkins University Press.

      5 5. DePalma, R.G., Hayes, V.W., and Zacharski, L.R. (2007). Bloodletting: past and present. J. Am. Coll. Surg. 205: 132–144.

      6 6. Risse, G.B. (1979). Renaissance of bloodletting – chapter in modern therapeutics. J. Hist. Med. Allied Sci. 34: 3–22.

      7 7. Stokes, W. (1865). The address in medicine. BMJ ii: 133–142.

      8 8. Biggio, J.R. Jr. (2013). Bed rest in pregnancy: time to put the issue to rest. Obstet. Gynecol. 121: 1158–1160.

      9 9. Sprague, A.E. (2004). The evolution of bed rest as a clinical intervention. J. Obstet. Gynecol. Neonatal. Nurs. 33: 542–549.

Скачать книгу