Space Physics and Aeronomy, Solar Physics and Solar Wind. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов страница 10

Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов

Скачать книгу

poles and measure the magnetic fields in these regions. The largest ground‐based telescope ever built, the 4‐m Daniel K. Inouye Solar Telescope (DKIST), will be operational next year. The DKIST will reveal solar structures as small as 20–30 km in diameter. In the near future, the 4‐m European Solar Telescope (EST) will also become operational.

      The observations and measurements from the PSP and SolO and those we will get from the DKIST, EST, and other future missions and telescopes will not only help answer long‐standing scientific questions but also lead to significant discoveries and open new avenues for exploration. These measurement capabilities will write a new chapter of space and solar physics. So, it is a good time now to take a look at the status of the solar and heliospheric research. This book presents seven chapters that cover most aspects of solar and heliospheric physics.

      Important technological inventions, along with essential advances in mathematics and physical theories made over the last few centuries, led to fundamental solar and astronomical discoveries. These discoveries created new puzzles that form the main pillars and axes of solar and heliospheric research. The invention of the telescope and the discovery of sunspots by Galileo in the 16th century represent a turning point in solar physics research. Soon after, the 11‐year solar cycle was revealed with its long‐ and short‐term variability. The observation of the strongest flare in recorded history by Carrington in 1858 was another important milestone and the building block for solar activity and space weather. The exact nature of these phenomena remained hidden until the discovery of solar magnetism by George Hale (1908). He stated in his The Astrophysical Journal paper: “The present paper describes an attempt to enter one of the new fields of research opened by this recent work with the spectroheliograph,” which is a testament to the fact that scientific advances go hand in hand with technology. In the next half‐ century, three major phenomena were discovered: the coronal heating problem, the solar wind and its acceleration, and coronal mass ejections. All of these phenomena are driven by the magnetic field, which is generated deep in the convection zone

      Understanding the Sun is essential not only because we live in its extended atmosphere (i.e., the corona and the solar wind) but also because it is the only star we can study in detail. The knowledge we gain from observing the Sun and its environment provides insights into other worlds that may harbor life like our Earth.

       Nour E. Raouafi and Angelos Vourlidas Johns Hopkins University Applied Physics Laboratory USA

Schematic illustration of radial evolution of solar wind temperatures from the corona to 1 AU.

      (Source: Reproduced with permission from Predictive Science Inc.)

       Alexis P. Rouillard1, Nicholeen Viall2, Viviane Pierrard3, Christian Vocks4, Lorenzo Matteini5, Olga Alexandrova6, Aleida K. Higginson2, Benoit Lavraud7, Michael Lavarra1, Yihong Wu4, Rui Pinto1,8, Alessandro Bemporad9, and Eduardo Sanchez‐Diaz1

       1 Institut de Recherche en Astrophysique et Planétologie, Toulouse, France

       2 NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

       3 Belgian Institute for Space Aeronomy, Brussels, Belgium

       4 Leibniz Institute for Astrophysics Potsdam, Potsdam, Germany

       5 Department of Physics, Imperial College London, London, UK

       6 Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Université PSL, CNRS Sorbonne Université, Université de Paris, Meudon, France

       7 Laboratoire d’Astrophysique de Bordeaux, Université de Bordeaux, CNRS, B18N, Pessac, France

       8 Laboratoire Dynamique des Etoiles, des (Exo)planètes et de leur Environnement (LDE3), Astrophysics Division (DAp/ AIM), Saclay Nuclear Research Centre (CEA Saclay), Gif‐sur‐Yvette, France

       9 INAF Osservatorio Astrofisico di Torino, Turin, Italy

      One of the current mysteries in heliophysics is the heating of the solar atmosphere to temperatures that are orders of magnitude hotter than the solar surface. As a result of this heating, the Sun cannot contain its atmosphere, and a continual outflow of plasma streams out from the solar corona to interplanetary space and beyond. For the debate surrounding the exact physical mechanisms of the heating of the corona, we direct the reader to Chapter 2. We here discuss the physical mechanisms behind the formation and propagation of the solar wind that are not yet well understood.

Скачать книгу