Space Physics and Aeronomy, Solar Physics and Solar Wind. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов страница 14

Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов

Скачать книгу

such as suprathermal electrons, ubiquitous in the solar wind, could also contribute to the acceleration of the wind by imposing an electric field on the ions, extracting them out of the corona to high speeds (Pierrard & Pieters, 2014). It is, however, very challenging to deal with these different types of processes altogether in a unified view, as they work on very different scales.

Schematic illustration of the configuration in the inner heliosphere of a ballerina skirt heliospheric current sheet extending above the streamer belt near solar minimum (for A greater than 0 solar magnetic field polarity, that is, outward field at the north pole), which lies ahead of a high-speed stream (drawn truncated at high latitudes) from an equatorward extension of a northern polar coronal hole. The dark shaded region is the interaction region.

      (Source: Image reproduced with permission from Schwenn, 1990, © 1990, Springer.)

      1.3.2. Composition of the Solar Winds

      As an element rises in the solar atmosphere from the chromosphere to the hot corona, its ionization level increases due to radiative and collisional processes. This carries on until it reaches a height where radiative ionization is too weak and collisions are rare. Beyond that height, the charge state is said to be “frozen” and remains unchanged until it is measured in situ in the interplanetary medium. A measure of the charge state of heavy ions therefore provides unique information on the temperature at the source regions of the solar winds (Geiss et al., 1995). The charge state of an ion species will increase with temperature at the collisional coronal base of a solar wind flux tube. Solar wind measurements have shown that the carbon and oxygen ions have lower charge states (07+/06+ or C5+/C6+) in the fast than in the slow wind (Geiss et al., 1995; Kasper et al., 2012). This is clearly seen in Figure 1.7 for the 07+/06+ ratio.

Schematic illustration of typical time profiles of solar wind parameters for a selected solar wind interval. The SW parameters are (from top down) proton speed (vp), O+7/O+6 density ratio, average charge of Fe (QFe), Fe/O relative to its photospheric value, proton density (np), and the magnitude of the associated interplanetary magnetic field (—B—). The selected SW interval is between the two vertical dashed lines.

      (Source: Image taken with permission from Ko et al., 2014. © 2014, IOP Publishing.)

      Sharp O7+/O6+ boundaries occur at both leading and trailing edges of high‐speed streams, suggesting rapid transitions between different coronal sources (Borovsky & Denton, 2016; Burton et al., 1999). High‐cadence measurements of the ionization state of heavy ions in the slow wind have recently revealed a high degree of variability, changing by an order of magnitude inside density structures (Kepko et

Скачать книгу