Space Physics and Aeronomy, Solar Physics and Solar Wind. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов страница 15

Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов

Скачать книгу

discussed later in the chapter.

      The higher charge state of heavy ions measured in the slow wind necessarily results from higher temperatures and densities at the coronal base of open field lines channeling the slow wind. Numerical models of the solar coronal plasma and magnetic field have been used to study the origin(s) of the slow wind. They reveal that magnetic fields are generally stronger at the base of flux tubes channeling the slow wind (Wang et al., 2009). There is a clear statistical correlation between coronal regions threaded by strong magnetic fields in the form of loops or open magnetic fields and high‐plasma temperatures (Schrijver et al., 2004). Therefore, one possible interpretation for the high charge‐state ratios measured in the slow wind resides in strong local heating near its source region due to the strong magnetic fields (Wang et al., 2009). Such a strong heating at the coronal base would lead to a strong heat flux conducted down to the chromosphere and enhanced densities in the slow wind. In contrast, less evaporation is likely to occur near the cooler source region of the fast wind, leading to a more tenuous fast wind. This interpretation can explain the fairly constant mass flux measured in situ in the fast and slow solar winds.

Schematic illustration of element abundances as a function of the first ionization potential (FIP) in the average slow solar wind, fast solar wind. Abundances are given relative to oxygen and are normalized to photospheric abundances.

      (Source: This figure was taken from Geiss, 1998 with permission from SSR. © 1998, Springer Nature.)

      An alternative theory for the origin of the high charge states measured in the slow wind suggests that plasma initially confined to coronal loops is released along open magnetic field lines (Fisk et al., 1998; Schwadron et al., 1999). Loop plasma would naturally be pushed to higher ionization states because loops host typically hotter and denser plasma than open fields of coronal holes (Schwadron et al., 1999). For this mechanism to work, loop plasma must find a way to be transferred to the open field, which would require magnetic reconnection to occur continually.

Schematic illustration of the abundance of helium during 17 years of solar wind measurements by the Advanced Composition Explorer (ACE). The color coding indicates the solar wind speed. The monthly smoothed sunspot number is plotted as a black curve. Right: The abundance of helium relative to oxygen, measured by ACE/SWICS. The same trend of depletion with wind speed as for He/H is seen, but the solar cycle dependence is less pronounced.

      (Source: Images reproduced with permission from Kasper et al., 2012 and Rakowski & Laming, 2012. © 2012, IOP Publishing.)

      There is currently no accepted mechanism for the regulation of heavy ion abundances in the solar wind. All proposed mechanisms must necessarily occur where elements are first ionized in the chromosphere and fractionate elements in a mass‐independent manner. Several mechanisms have been invoked in this region to modulate the transfer of heavy ions from the chromosphere to the corona. They include, for example, the effect of Coulomb collisions in high‐temperature gradients (Bø et al., 2013) and the effect of MHD waves via a ponderomotive force (Laming, 2009, 2015). The latter mechanism, in particular, is able to explain a broad range of composition measurements in the fast and slow solar winds for reasonable conditions in the solar atmosphere.

      1.3.3. Solar Wind Interaction Regions

Schematic illustrations of CIRs where the fast solar wind catches up and compresses 
						<noindex><p style= Скачать книгу