Quantum Mechanical Foundations of Molecular Spectroscopy. Max Diem

Чтение книги онлайн.

Читать онлайн книгу Quantum Mechanical Foundations of Molecular Spectroscopy - Max Diem страница 23

Автор:
Жанр:
Серия:
Издательство:
Quantum Mechanical Foundations of Molecular Spectroscopy - Max Diem

Скачать книгу

target="_blank" rel="nofollow" href="#ulink_3388a178-49af-5b2f-8530-4fd249f53989">Figure 2.4 Wavefunctions of the two‐dimensional particle in a box for (a) nx = 1 and ny = 2 and (b) nx = 2 and ny = 1.

      (2.46)upper E Subscript n Sub Subscript x Subscript n Sub Subscript y Baseline equals StartFraction left-parenthesis n Subscript x Superscript 2 Baseline plus n Subscript y Superscript 2 Baseline right-parenthesis h squared Over 8 m upper L squared EndFraction

      (2.47)upper E 21 equals upper E 12 equals StartFraction 5 h squared Over 8 m upper L squared EndFraction

      When two or more energy eigenvalues for different combination of quantum numbers are the same, these energy states are said to be degenerate. Here, for nx = 2 and ny = 1 and nx = 1 and ny = 2, the same energy eigenvalues are obtained; consequently, E21 and E12 are degenerate. This is a common occurrence in quantum mechanics, as will be seen later in the discussion of the hydrogen atom (Chapter 7), where all the three 2p orbitals, the five 3d orbitals, and the seven 4f orbitals are found to be degenerate.

      2.4.2 The Unbound Particle

      Next, the case of a system without the restriction of the boundary conditions (an unbound particle) will be discussed. This discussion starts with the same Hamiltonian used before:

      (2.23)StartFraction d squared Over normal d x squared EndFraction normal psi left-parenthesis normal x right-parenthesis plus StartFraction 2 italic m upper E Over normal h with stroke squared EndFraction normal psi left-parenthesis x right-parenthesis equals 0

      When this differential equation is solved without the previously used boundary conditions

      (2.29)normal psi left-parenthesis x right-parenthesis equals 0 a t x equals 0 and a t x equals normal upper L

      the new solutions represent a particle–wave that travels along the positive or negative x‐direction. The most general solution of the differential Eq. (2.23) is

      where b is a constant.

      (2.49)StartFraction d squared Over normal d x squared EndFraction normal psi left-parenthesis x right-parenthesis equals StartFraction d squared Over normal d x squared EndFraction upper A normal e Superscript plus-or-minus italic i b x Baseline equals minus-or-plus b squared upper A normal e Superscript plus-or-minus italic i b x Baseline equals minus-or-plus b squared normal psi left-parenthesis x right-parenthesis

      with

      or

      (2.52)upper E equals StartFraction p squared Over 2 m EndFraction equals StartFraction h squared Over 2 m normal lamda squared EndFraction

      (2.53)normal psi Subscript plus-or-minus Baseline left-parenthesis x right-parenthesis equals upper A normal e Superscript plus-or-minus StartFraction 2 normal pi italic i x Over normal lamda EndFraction

      carrying a momentum

      (2.54)p equals plus-or-minus StartFraction h Over normal lamda EndFraction equals plus-or-minus normal h with stroke bold-italic k

      into the positive or negative x‐direction. k is the wave vector defined in Eq. (1.6).

      2.4.3 The Particle in a Box with Finite Energy Barriers

      The potential energy for this case is written as

      (2.55)upper V left-parenthesis x right-parenthesis equals 0 for minus StartFraction upper L Over 2 EndFraction less-than-or-equal-to x less-than-or-equal-to plus StartFraction upper L Over 2 EndFraction

      and

      (2.56)upper V left-parenthesis x right-parenthesis equals upper V 0 for x less-than minus StartFraction upper L Over 2 EndFraction and x greater-than StartFraction upper L Over 2 EndFraction

      (Notice that the boundaries of the box

Скачать книгу