Computational Methods in Organometallic Catalysis. Yu Lan

Чтение книги онлайн.

Читать онлайн книгу Computational Methods in Organometallic Catalysis - Yu Lan страница 24

Автор:
Жанр:
Серия:
Издательство:
Computational Methods in Organometallic Catalysis - Yu Lan

Скачать книгу

r right-parenthesis right-bracket plus upper V Subscript e e Baseline left-bracket rho left-parenthesis r right-parenthesis right-bracket plus upper E Subscript x c Baseline left-bracket rho left-parenthesis r right-parenthesis right-bracket"/>

      where Te′ is the kinetic energy of noninteracting electrons whose density is the same as the density of the real electrons, the true interacting electrons. Vne is the nuclear–electron attraction term. Vee is the classical electron–electron repulsion [37]. The last term is called the exchange–correlation functional, and is a catch‐all term to account for all other aspects of the true system. However, it offers no guidance as to the form of that functional.

      The exchange–correlation functional is generally written as a sum of two components, an exchange part and a correlation part. This is an assumption, an assumption that we have no way of knowing is true or not. These component functionals are usually written in terms of an energy density ε

upper E Subscript upper X upper C Baseline left-bracket rho left-parenthesis r right-parenthesis right-bracket equals upper E Subscript normal upper X Baseline left-bracket rho left-parenthesis r right-parenthesis right-bracket plus upper E Subscript normal upper C Baseline left-bracket rho left-parenthesis r right-parenthesis right-bracket equals integral rho left-parenthesis r right-parenthesis epsilon Subscript normal upper X Baseline left-bracket rho left-parenthesis r right-parenthesis right-bracket normal d r plus integral rho left-parenthesis r right-parenthesis epsilon Subscript normal upper C Baseline left-bracket rho left-parenthesis r right-parenthesis right-bracket normal d r

      The major problem with DFT is that the exact functionals for exchange and correlation are not known except for the free electron gas. However, approximations exist, which permit the calculation of certain physical quantities quite accurately. One of the initial simple approximations of exchange–correlation functional is the local‐density approximation (LDA), in which the exchange–correlation functional of uniform electron gas with same density is used as the approximation of the corresponding nonuniform system [38]. Unexpectedly, such a simple approximation often yields good results, which directly led to the widespread application of DFT currently. If the electron densities of different spin components are further considered, the local spin density approximation (LSDA) can be obtained. Despite the great success of L(S)DA, there are many shortcomings, such as systematic overestimation of binding energies.

      2.2.2 Jacob's Ladder of Density Functionals

Schematic illustration of Jacob's ladder of density functionals.

      The first rung in “Jacob's ladder” is the density functional based on L(S)DA, the variable in which kind of functionals is the local spin density. The exchange functional of L(S)DA can be written as analytic expressions, which is often called Slater or Dirac exchange functional. However, the correlation functional of L(S)DA has no analytic expression, and can only be fitted by a functional with parameters from the results of high‐level calculations on some uniform electron gases. L(S)DA has achieved surprising success in the early works on the computational study of solid‐state physics. However, it is failure in computational chemistry because L(S)DA usually overestimates the bonding energy.

      2.2.3 The Second Rung in “Jacob's Ladder” of Density Functionals

      2.2.4 The Third Rung in “Jacob's Ladder” of Density Functionals

      The third rung in “Jacob's ladder” of density functionals is meta‐GGA functionals. The variables with more functionals than GGA are the kinetic energy density or the second derivative of the local spin density. The most common meta‐GGA involved are M06‐L, TPSS, and VSXC [45–47], which are often used in computational organometallic chemistry currently.

      2.2.5 The Fourth Rung in “Jacob's Ladder” of Density Functionals

      The fourth rung in “Jacob's ladder” of density functionals is hybrid‐GGA and hybrid‐meta‐GGA. This kind of functionals are the most popular functional in computational chemistry currently, into which HF exchange is introduced. In the field of computational organometallic chemistry, the commonly used hybrid‐GGA functionals involves B3LYP [42, 48], B97 [49], O3LYP [50], PBE0 [51], mPW1PW [52], X3LYP [53], etc.; the commonly used hybrid‐meta‐GGA functionals involves M05, M05‐2X, M06, M06‐HF, M06‐2X, TPSSh, MPW1K, etc. [46, 54–58].

      Undoubtedly, B3LYP is the most widely used functional in computational chemistry, which combines exact HF exchange with Becke's gradient‐corrected exchange, the LYP correlation functional, and VWN for the local correlation terms, as the following function:

upper E Subscript upper X upper C Superscript normal upper B Baseline 3 upper L upper Y upper P Baseline equals left-parenthesis 1 minus a 0 right-parenthesis upper E Subscript normal upper X Superscript LSDA Baseline plus a 0 upper E Subscript normal upper X Superscript upper H upper F Baseline plus a Subscript x Baseline nabla upper E Subscript normal upper X Superscript normal upper B Baseline 88 Baseline plus a Subscript c Baseline upper E Subscript normal upper C Superscript upper L upper Y upper P Baseline plus left-parenthesis 1 minus a Subscript c Baseline right-parenthesis upper E Subscript normal upper C Superscript upper V upper M upper N

      According

Скачать книгу