Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Чтение книги онлайн.

Читать онлайн книгу Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney страница 32

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney

Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_98b94b33-e07c-50f2-abaa-fc24ec16c7dc.png" alt="upper S equals StartSet negative 1 comma 0 EndSet"/>, the classical theory requires that the corresponding set script upper W 4 Superscript negative 1 Baseline left-parenthesis upper A right-parenthesis element-of script upper A be found so that

upper P left-parenthesis upper S right-parenthesis equals upper P left-parenthesis script upper W 4 Superscript negative 1 Baseline left-parenthesis upper A right-parenthesis right-parenthesis

      gives the probability of outcomes as the corresponding probability in the sample space. Conveniently, in this case normal upper Omega is chosen as simply the set of outcomes left-brace w left-parenthesis 4 right-parenthesis right-brace; script upper W 4 is the identity function; and

upper S equals upper A equals script upper W 4 Superscript negative 1 Baseline left-parenthesis upper A right-parenthesis comma so upper P left-parenthesis upper S right-parenthesis equals upper P left-parenthesis script upper W 4 Superscript negative 1 Baseline left-parenthesis upper A right-parenthesis right-parenthesis

      trivially. In effect, the random‐variable‐as‐measurable‐function approach of classical theory reduces to the “naive” or “realistic” method, in which the probabilities pertain to outcomes w left-parenthesis 4 right-parenthesis, and are not primarily inherited from some abstract measurable space normal upper Omega.

      Alternatively, let the sample space be bold upper R and let script upper A be the class of Borel subsets of bold upper R (so script upper A includes the singletons StartSet omega EndSet for each omega element-of normal upper Omega). Define upper P on script upper A by upper P left-parenthesis bold upper R minus normal upper Omega right-parenthesis equals 0 and

upper P left-parenthesis StartSet omega EndSet right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column one sixteenth 2nd Column if omega equals negative 5 comma 0 comma 1 comma 2 comma 3 comma 4 comma 5 comma or 10 comma 2nd Row 1st Column two sixteenths 2nd Column if omega equals negative 1 comma negative 2 comma negative 3 comma or negative 4 comma 3rd Row 1st Column 0 2nd Column otherwise semicolon EndLayout

      so upper P is atomic. As before, with upper S equals StartSet negative 1 comma 0 EndSet,

upper P left-parenthesis upper S right-parenthesis equals upper P left-parenthesis script upper W 4 Superscript negative 1 Baseline left-parenthesis upper A right-parenthesis right-parenthesis equals three sixteenths period

      Classical probability involves a quite heavy burden of sophisticated and complicated measure theory. There are good historical reasons for this, and it is unwise to gloss over it. In practice, however, the sample space normal upper Omega, in which probability measure upper P is specified, is often chosen—as above—in such a way that measure‐theoretic abstractions and complexities melt away, so that the “natural” or untutored approach, involving just outcomes and their probabilities, is applicable.

      [MTRV] shows how to formulate an effective theory of probability which follows naturally from the naive or realistic approach described above, and which does not require the theory of measure as its foundation. The following pages are intended to convey the basic ideas of this approach.

      Example 6

upper W left-parenthesis t right-parenthesis equals sigma-summation Underscript j equals 1 Overscript n Endscripts upper Z left-parenthesis s Subscript j minus 1 Baseline right-parenthesis left-parenthesis upper X left-parenthesis s Subscript j Baseline right-parenthesis minus upper X left-parenthesis s Subscript j minus 1 Baseline right-parenthesis right-parenthesis comma integral Subscript 0 Superscript t Baseline upper Z left-parenthesis s right-parenthesis d upper X left-parenthesis s right-parenthesis comma

      based on sample value calculations (2.4:

      (2.10)w left-parenthesis t right-parenthesis equals sigma-summation Underscript s equals 1 Overscript t Endscripts z left-parenthesis s minus 1 right-parenthesis left-parenthesis x left-parenthesis s right-parenthesis minus x left-parenthesis s minus 1 right-parenthesis right-parenthesis comma

c left-parenthesis s right-parenthesis equals z left-parenthesis s minus 1 right-parenthesis times left-parenthesis x left-parenthesis s right-parenthesis minus x left-parenthesis s minus 1 right-parenthesis right-parenthesis comma w left-parenthesis s right-parenthesis equals w left-parenthesis s minus 1 right-parenthesis plus c left-parenthesis s right-parenthesis period

      If x left-parenthesis s right-parenthesis and z left-parenthesis s right-parenthesis are to be treated as functions of a continuous variable s for 0 less-than-or-equal-to s less-than-or-equal-to t, this

Скачать книгу