Caries Excavation: Evolution of Treating Cavitated Carious Lesions. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Caries Excavation: Evolution of Treating Cavitated Carious Lesions - Группа авторов страница 5

Caries Excavation: Evolution of Treating Cavitated Carious Lesions - Группа авторов Monographs in Oral Science

Скачать книгу

damage, the host has developed several ingenious strategies. A major resistance to carious lesion progression is mounted by the dentine-pulp tissues. The signalling molecules and growth factors released upon dentine demineralisation upregulate the odontoblast activity and act as sensor cells. After carious stimulation, odontoblasts initiate an inflammatory reaction by producing chemokines and synthesise a protective tertiary dentine. After the destruction of these cells, the pulp still has a high capacity to synthesise this tertiary dentine thanks to the presence of adult stem cells within the pulp. Also, in addition to the systemic regulation, the pulp which is located within the inextensible confines of the dentine walls has a well-developed local regulation of its inflammation, regeneration, and vascularisation. This local regulation is due to the activity of different pulp cell types, mainly the fibroblasts, which secrete soluble molecules that regulate all these processes.

      © 2018 S. Karger AG, Basel

      Microbiology of Tooth Decay

      In dental caries, we see an ecologic shift within the dental biofilm environment, driven by frequent access to fermentable dietary carbohydrates. This leads to a move from a balanced population of microorganisms of low cariogenicity to a consortium of high cariogenicity and to an increased production – and correlated tolerance – of organic acids promoting dental hard tissue net mineral loss. That is why we call this consortium acidogenic and acidophil (synonym aciduric). Besides the presence of fermentable dietary carbohydrates and selection of acidogenic-aciduric bacterial species, the host susceptibility, which is a rather simplified term for a multifactorial complexity, is the third major player.

      Unlike MS, the highly aciduric bifidobacteria, especially B. dentium, do not colonise hard surfaces per se, since denture plaque associated with denture stomatitis harboured high levels of MS, lactobacilli, and yeasts, but not B. dentium. This indicates that B. dentium does not simply colonise intact dental hard surfaces but instead suggests that it is the lesion initiated by other species that facilitate the attachment and proliferation of B. dentium. In contrast to MS, the presence of this species might therefore be more a result than the cause of initial lesions. Clearly, B. dentium and MS are significant independent indicators [9].

      A similar role (more profiteer than initiator) was recently proposed for lactobacilli, with Lactobacillus fermentum, L. rhamnosus, L. gasseri, L. salivarius, L. plantarum, and the L. casei-paracasei group as the most abundant species. According to this concept, precaries lesions become a retentive, low pH niche for lactobacilli accumulation, which take advantage of their proclivity for making and surviving in an increasingly reduced pH environment. In some cases, the lactobacilli can even outcompete and exclude the MS that created the retentive niche, which might explain why caries lesions are sometimes free of MS but not or very rarely free of lactobacilli [9].

      Taken together, every cavity might have its own demineralising consortium of active organisms and genes, but the following simple principles are universal:

      1 Presence of acidogenic-aciduric microorganisms and their ability to

Скачать книгу