The Complete Essays by Herbert Spencer (Vol. 1-3). Spencer Herbert
Чтение книги онлайн.
Читать онлайн книгу The Complete Essays by Herbert Spencer (Vol. 1-3) - Spencer Herbert страница 35
[15] It is true that since this essay was written reasons have been given for concluding that comets consist of swarms of meteors enveloped in aeriform matter. Very possibly this is the constitution of the periodic comets which, approximating their orbits to the plane of the Solar System, form established parts of the System, and which, as will be hereafter indicated, have probably a quite different origin.
[16] Though this rule fails at the periphery of the Solar System, yet it fails only where the axis of rotation, instead of being almost perpendicular to the orbit-plane, is very little inclined to it; and where, therefore, the forces tending to produce the congruity of motions were but little operative.
[17] It is true that, as expressed by him, these propositions of Laplace are not all beyond dispute. An astronomer of the highest authority, who has favoured me with some criticisms on this essay, alleges that instead of a nebulous ring rupturing at one point, and collapsing into a single mass, "all probability would be in favour of its breaking up into many masses." This alternative result certainly seems the more likely. But granting that a nebulous ring would break up into many masses, it may still be contended that, since the chances are infinity to one against these being of equal sizes and equidistant, they could not remain evenly distributed round their orbit. This annular chain of gaseous masses would break up into groups of masses; these groups would eventually aggregate into larger groups; and the final result would be the formation of a single mass. I have put the question to an astronomer scarcely second in authority to the one above referred to, and he agrees that this would probably be the process.
[18] The comparative statement here given differs, slightly in most cases and in one case largely, from the statement included in this essay as originally published in 1858. As then given the table ran thus:—
Mercury. | Venus. | Earth. | Mars. | Jupiter. | Saturn. | Uranus. |
1⁄362 | 1⁄282 | 1⁄289 | 1⁄326 | 1⁄14 | 1⁄6·2 | 1⁄9 |
1 Satellite. | 4 Satellites. | 8 Satellites, and three rings | 4 (or 6 according to Herschel). |
The calculations ending with these figures were made while the Sun's distance was still estimated at 95 millions of miles. Of course the reduction afterwards established in the estimated distance, entailing, as it did, changes in the factors which entered into the calculations, affected the results; and, though it was unlikely that the relations stated would be materially changed, it was needful to have the calculations made afresh. Mr. Lynn has been good enough to undertake this task, and the figures given in the text are his. In the case of Mars a large error in my calculation had arisen from accepting Arago's statement of his density (0·95), which proves to be something like double what it should be. Here a curious incident may be named. When, in 1877, it was discovered that Mars has two satellites, though, according to my hypothesis, it seemed that he should have none, my faith in it received a shock; and since that time I have occasionally considered whether the fact is in any way reconcilable with the hypothesis. But now the proof afforded by Mr. Lynn that my calculation contained a wrong factor, disposes of the difficulty—nay, changes the objection to a verification. It turns out that, according to the hypothesis, Mars ought to have satellites; and, further, that he ought to have a number intermediate between 1 and 4.
[19] Since this paragraph was first published, the discovery that Mars has two satellites revolving round him in periods shorter than that of his rotation, has shown that the implication on which Laplace here insists is general only, and not absolute. Were it a necessary assumption that all parts of a concentrating nebulous spheroid revolve with the same angular velocities, the exception would appear an inexplicable one; but if, as suggested in a preceding section, it is inferable from the process of formation of a nebulous spheroid, that its outer strata will move round the general axis with higher angular velocities than the inner ones, there follows a possible interpretation. Though, during the earlier stages of concentration, while the nebulous matter, and especially its peripheral portions, are very rare, the effects of fluid-friction will be too small to change greatly such differences of angular velocities as exist; yet, when concentration has reached its last stages, and the matter is passing from the gaseous into the liquid and solid states, and when also the convection-currents have become common to the whole mass (which they probably at first are not), the angular velocity of the peripheral portion will gradually be assimilated to that of the interior; and it becomes comprehensible that in the case of Mars the peripheral portion, more and more dragged back by the internal mass, lost part of its velocity during the interval between the formation of the innermost satellite and the arrival at the final form.
[20] I was about to suppress part of the above paragraph, written before the science of solar physics had taken shape, because of certain physical difficulties which stand in the way of its argument, when, on looking into recent astronomical works, I found that the hypothesis it sets forth respecting the Sun's structure has kinships to the several hypotheses since set forth by Zöllner, Faye, and Young. I have therefore decided to let it stand as it originally did.
The contemplated partial suppression just named, was prompted by recognition of the truth that to effect mechanical stability the gaseous interior of the Sun must have a density at least equal to that of the molten shell (greater, indeed, at the centre); and this seems to imply a specific gravity higher than that which he possesses. It may, indeed, be that the unknown elements which spectrum analysis shows to exist in the Sun, are metals of very low specific gravities, and that, existing in large proportion with other of the lighter metals, they may form a molten shell not denser than is implied by the facts. But this can be regarded as nothing more than a possibility.
No need, however, has arisen for either relinquishing or holding but loosely the associated conclusions respecting the constitution of the photosphere and its envelope. Widely speculative as seemed these suggested corollaries from the Nebular Hypothesis when set forth in 1858, and quite at variance with the beliefs then current, they proved to be not ill-founded. At the close of 1859, there came the discoveries of Kirchhoff, proving the existence of various metallic vapours in the Sun's atmosphere.
ADDENDA.