The Complete Essays by Herbert Spencer (Vol. 1-3). Spencer Herbert

Чтение книги онлайн.

Читать онлайн книгу The Complete Essays by Herbert Spencer (Vol. 1-3) - Spencer Herbert страница 37

Автор:
Серия:
Издательство:
The Complete Essays by Herbert Spencer (Vol. 1-3) - Spencer Herbert

Скачать книгу

the first place, it seems inferable from physico-chemical facts at large, that only through the instrumentality of those combinations which formed the elements, did the concentration of diffused nebulous matter into concrete masses become possible. If we remember that hydrogen and oxygen in their uncombined states oppose, the one an insuperable and the other an almost insuperable, resistance to liquefaction, while when combined the compound assumes the liquid state with facility, we may suspect that in like manner the simpler types of matter out of which the elements were formed, could not have been reduced even to such degrees of density as the known gases show us, without what we may call proto-chemical unions: the implication being that after the heat resulting from each of such proto-chemical unions had escaped, mutual gravitation of the parts was able to produce further condensation of the nebulous mass.

      Note III. Are the internal structures of celestial bodies all the same, or do they differ? And if they differ, can we, from the process of nebular condensation, infer the conditions under which they assume one or other character? In the foregoing essay as originally published, these questions were discussed; and though the conclusions reached cannot be sustained in the form given to them, they foreshadow conclusions which may, perhaps, be sustained. Referring to the conceivable causes of unlike specific gravities in the members of the solar system, it was said that these might be—

      "1. Differences between the kinds of matter or matters composing them. 2. Differences between the quantities of matter; for, other things equal, the mutual gravitation of atoms will make a large mass denser than a small one. 3. Differences between the structures: the masses being either solid or liquid throughout, or having central cavities filled with elastic aëriform substance. Of these three conceivable causes, that commonly assigned is the first, more or less modified by the second."

      Written as this was before spectrum-analysis had made its disclosures, no notice could of course be taken of the way in which these conflict with the first of the foregoing suppositions; but after pointing out other objections to it the argument continued thus:—

      After saying that the familiarity of this hypothesis must not delude us into uncritical acceptance of it, but that if any other hypothesis is physically possible it may reasonably be entertained, it was argued that by tracing out the process of condensation in a nebulous spheroid, we are led to infer the eventual formation of a molten shell with a nucleus consisting of gaseous matter at high tension. The paragraph which then follows runs thus:—

      "But what," it may be asked, "will become of this gaseous nucleus when exposed to the enormous gravitative pressure of a shell some thousands of miles thick? How can aeriform matter withstand such a pressure?" Very readily. It has been proved that, even when the heat generated by compression is allowed to escape, some gases remain uncondensible by any force we can produce. An unsuccessful attempt lately made in Vienna to liquify oxygen, clearly shows this enormous resistance. The steel piston employed was literally shortened by the pressure used; and yet the gas remained unliquified! If, then, the expansive force is thus immense when the heat evolved is dissipated, what must it be when that heat is in great measure detained, as in the case we are considering? Indeed the experiences of M. Cagniard de Latour have shown that gases may, under pressure, acquire the density of liquids while retaining the aeriform state, provided the temperature continues extremely high. In such a case, every addition to the heat is an addition to the repulsive power of the atoms: the increased pressure itself generates an increased ability to resist; and this remains true to whatever extent the compression is carried. Indeed it is a corollary from the persistence of force that if, under increasing pressure, a gas retains all the heat evolved, its resisting force is absolutely unlimited. Hence the internal planetary structure we have described is as physically stable a one as that commonly assumed."

      Had this paragraph, and the subsequent paragraphs, been written five years later, when Prof. Andrews had published an account of his researches, the propositions they contain, while rendered more specific and at the same time more defensible, would perhaps have been freed from the erroneous implication that the internal structure indicated is an universal one. Let us, while guided by Prof. Andrews' results, consider what would probably be the successive changes in a condensing nebulous spheroid.

      Prof.

Скачать книгу