Terrestrial & Celestial Globes. Edward Luther Stevenson
Чтение книги онлайн.
Читать онлайн книгу Terrestrial & Celestial Globes - Edward Luther Stevenson страница 6
12 Berger, op. cit., pt. 3; Bunbury, op. cit., Vol. I, chap. xvi.
13 Berger, op. cit., pt. 3; Bunbury, op. cit., Vol. II, chap. xvii, sec. 1.
14 Bunbury, op. cit., Vol. II, chap. xxvi. Marinus is known to us only at second-hand. Ptolemy extols him in the highest terms, but he undertook to reform his maps just as Marinus had undertaken to reform the maps of his predecessors.
15 Bunbury, op. cit., Vol. II, chaps. xxviii-xxix; Mollweide, S. Die Mappierungskunst des Ptolemaus. (In: Zachs Monatliche Korrespondence zur Beförderung der Erd- und Himmelskunde. Weimar. Bd. 11, pp. 322 ff.); Nordenskiöld, A. E. Facsimile Atlas. Stockholm, 1889. This last-named work gives consideration to the Atlas of Ptolemy, to the numerous editions of his Geographia, to his geographical errors. The twenty-seven maps printed in the 1490 Rome edition of the Atlas are reproduced. See also the printed lists of the editions of Ptolemy’s Atlas by Eames, W., Winsor, J., Philipps, P. L.
16 Bunbury, op. cit., Vol. II, chap. xxviii, sec. 2; Fink. Mela und seine Geographie. Rosenheim, 1881. Mela titled his work, “De situ orbis.” Excellent tr. into English by Golding, Arthur. London, 1585. Various printed editions, first in 1471.
17 Bunbury, op. cit., Vol. II, chap. xxiv. Various editions of original; various English translations. Pliny titled his work, “Naturalis historia.”
18 Miller, K. Die Weltkarte des Castorius, genannt Peutingersche Tafel. Ravensburg, 1887; Porena, F. Orbis pictus d’Agrippa. Roma, 1883; Desjardins, E. La Table de Peutinger d’après l’original conservé à Vienne. Paris, 1896.
19 Lewis, G. C. Historical survey of the Astronomy of the Ancients. London, 1862. pp. 80 ff.; Berger, op. cit., pt. 1.
20 Bunbury, op. cit., Vol. I, chap. iv, secs. 4, 5.
21 A scientific foundation for the spherical theory seems not to antedate Aristotle. See especially his work, De Coelo, Bk. II, chap. 14, and for a good translation of this work by Taylor, T., bearing title, On the Heavens, from the Greek with copious elucidations. London, 1807. Plato’s statement in Phaedo merely observes that the earth, if like a ball, must be suspended without support in the interior of a hollow sphere. See also the Book of Job, chap. xxvi, v. 7, where reference is made to the earth hanging upon nothing. There is here probably the expression of an early Assyrian or Babylonian belief in a spherical earth.
22 Strabo. Geographia. Bk. I, chap. 1, §20. See translation by Jones, H. L. The Geography of Strabo. New York, 1917. 8 vols.
23 Bunbury, op. cit., Vol. I, pp. 619–620.
24 Wachsmuth, C. De Cratte Mallota. Leipzig, 1860; Berger, H. Entwickelung der Geographie der Erdkugel bei den Hellenen. (In: Grenzboten, Vol. xxxiv, pp. 408 ff.); Müllenhoff, C. (In: Deutsche alterthumskunde. Berlin, 1895. p. 248.) Diodorus Siculus attributes the discovery of the use of the globe to Atlas of Libya.
25 Berger. Geschichte, pt. 2, p. 135; Friedrich, R. Materialien zur Begriffsbestimmung des Orbis Terrarum. Leipzig, 1887.
26 A belief in the existence of antipodal peoples, very clearly was accepted by Pythagoras, Eratosthenes, Crates, Posidonius, Aristotle, Strabo, and later by Capella. Numerous others presupposed the earth to be globular in shape. See Kretschmer, K. Die physische Erdkunde im christlichen Mittelalter. Wien, 1889. pp. 54–59, wherein the author gives consideration to the doctrine of the antipodes as held in the middle ages. Berger. Geschichte, pt. 3, p. 129, notes that the idea of the earth’s division into four parts or quarters persisted for centuries after Crates’ day, if not among scientific geographers, at least among those who could be said to have possessed general culture. Cleomedes, Ampelius, Nonnus, and Eumenius mention the idea as one to be accepted. See in this connection the world map of Macrobius, a reproduction of which may be found in Nordenskiöld, op. cit., pl. XXXI. See also Miller, K. Die Weltkarte des Beatus, 776 nach Christus. Stuttgart, 1895. p. 28.
It was thought that Africa did not extend to the equator, or at least was not habitable to the equator. Below the equator there was thought to be water but beyond the uninhabitable and impassable torrid zone a habitable region. The map of Lambertus well represents this early theory. Pomponius Mela called the inhabitants of this southern region “Antichthoni,” their country being unknown to us because of the torrid zone intervening. Pliny, and after him Solinus, says that for a long time the island of Taprobana (Ceylon) was thought to be the region occupied by the Antichthoni.
27 Strabo, op. cit., Bk. II, chap. v, §10.
28 Ptolemy. Geographia. Bk. I, chap. 22.
29 Pliny, op. cit., Bk. II, chap. 64; Bk. II, chap. 2.
Chapter II
Celestial Globes in Antiquity
Thales’ ideas, probably not a globe maker.—Eudoxus.—The Atlante Farnese.—Archimedes.—Allusion of Lactantius.—Pappus’ allusions.—Armillary spheres.—The astronomer Hipparchus.—Ptolemy.—Globes used for decorative purposes by the Romans.—Roman coins.—The Byzantine Leontius Mechanicus.
THOUGH we find but an occasional reference to terrestrial globes in the literature of classical antiquity, numerous statements appear therein which assure us that celestial globes, solid balls as well as armillary spheres, were constructed in those early centuries, for both practical and ornamental purposes. There exists, however, considerable uncertainty as to the exact character of the earliest of these globes.
The information we have concerning the Ionic School of Philosophers, of which school Thales is reputed to have been the founder, does not give us any satisfactory evidence that attempts were made by any of their number at a material representation of their astronomical or geographical theories. They were content, in the main, with mere philosophical or cosmical speculations. The statement, therefore, that Thales himself constructed a celestial globe, on which to represent his notion of the crystal sphere, is not well authenticated.30
While not assured to us by any positive statement, there appears to be good reason for believing the astronomer Eudoxus of Cnidos (409–356 BC) made