Genetic Disorders and the Fetus. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genetic Disorders and the Fetus - Группа авторов страница 178

Genetic Disorders and the Fetus - Группа авторов

Скачать книгу

reveals three distinct molecular subclasses of human preeclampsia. PloS One 2015; 10:e0116508.

      99 99. Cox B, Leavey K, Nosi U, et al. Placental transcriptome in development and pathology: expression, function, and methods of analysis. Obstet Gynecol 2015; 213:S138.

      100 100. Leung DN, Smith SC, To K, et al. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2001; 184:1249.

      101 101. Redman CG, Sargent I. Placental debris, oxidative stress and pre‐eclampsia. Placenta (Eastbourne) 2000; 21:597.

      102 102. Rolnik D, O'gorman N, Fiolna M, et al. Maternal plasma cell‐free DNA in the prediction of pre‐eclampsia. Ultrasound Obstet Gynecol 2015; 45:106.

      103 103. Taglauer E, Wilkins‐Haug L, Bianchi D. Review: cell‐free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 2014; 35:S64.

      104 104. Demers S, Roberge S, Bujold E. Low‐dose aspirin for the prevention of adverse pregnancy outcomes in women with elevated alpha‐fetoprotein. J Mat Fetal Neonat Med 2015; 28:726.

      105 105. Bujold E, Roberge S, Nicolaides KH. Low‐dose aspirin for prevention of adverse outcomes related to abnormal placentation. Prenat Diagn 2014; 34:642.

      106 106. Grill S, Rusterholz C, Zanetti‐Dällenbach R, et al. Potential markers of preeclampsia–a review. Reprod Biol Endocrinol 2009; 7:70.

      107 107. Vatten LJ, Eskild A, Nilsen TI, et al. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Obstet Gynecol 2007; 196:239.e1.

      108 108. Hawfield A, Freedman BI. Pre‐eclampsia: the pivotal role of the placenta in its pathophysiology and markers for early detection. Ther Adv Cardiovasc Dis 2009; 3:65.

      109 109. Poon LC, Nicolaides KH. Early prediction of preeclampsia. Obstet Gynecol Int. 2014; 2014:297397.

      110 110. Hui D, Okun N, Murphy K, et al. Combinations of maternal serum markers to predict preeclampsia, small for gestational age, and stillbirth: a systematic review. J Obstet Gynaecol Can 2012; 34:142.

      111 111. Kuc S, Wortelboer EJ, van Rijn BB, et al. Evaluation of 7 serum biomarkers and uterine artery Doppler ultrasound for first‐trimester prediction of preeclampsia: a systematic review. Obstet Gynecol Surv. 2011; 66:225.

      112 112. Heydanus R, Defoort P, Dhont M. Pre‐eclampsia and trisomy 13. Eur J Obstet Gynecol Reprod Biol 1995; 60:201.

      113 113. Boyd P, Lindenbaum R, Redman C. Pre‐eclampsia and trisomy 13: a possible association. Lancet 1987; 330:425.

      114 114. Zhang J, Christianson RE, Torfs CP. Fetal trisomy 21 and maternal preeclampsia. Epidemiology. 2004: 195.

      115 115. Dotters‐Katz SK, Humphrey WM, Senz KL, et al. Trisomy 13 and the risk of gestational hypertensive disorders: a population‐based study. J Matern Fetal Neonatal Med 2018; 31:1951.

      116 116. Pidoux G, Guibourdenche J, Frendo J, et al. Impact of trisomy 21 on human trophoblast behaviour and hormonal function. Placenta 2004; 25:S79.

      117 117. Frendo J, Guibourdenche J, Pidoux G, et al. Trophoblast production of a weakly bioactive human chorionic gonadotropin in trisomy 21‐affected pregnancy. J Clin Endocrinol Metab 2004; 89:727.

      118 118. Rizzo G, Capponi A, Cavicchioni O, et al. Placental vascularization measured by three‐dimensional power Doppler ultrasound at 11 to 13 6 weeks' gestation in normal and aneuploid fetuses. Ultrasound Obstet Gynecol 2007; 30:259.

      119 119. Moses E, Fitzpatrick E, Freed K, et al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre‐eclampsia on 2q22. MHR: Basic Sci Reprod Med 2006; 12:505.

      120 120. Roten LT, Johnson MP, Forsmo S, et al. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre‐eclampsia in a large Norwegian population‐based study (the HUNT study). Eur J Hum Genet 2009; 17:250.

      121 121. Oudejans CB, van Dijk M, Oosterkamp M, et al. Genetics of preeclampsia: paradigm shifts. Hum Genet 2007; 120:607.

      122 122. van Dijk M, Mulders J, Poutsma A, et al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 2005; 37:514.

      123 123. Romanelli V, Belinchon A, Campos‐Barros A, et al. CDKN1C mutations in HELLP/preeclamptic mothers of Beckwith–Wiedemann syndrome (BWS) patients. Placenta 2009; 30:551.

      124 124. McGinnis R, Steinthorsdottir V, Williams NO, et al. Variants in the fetal genome near FLT1 are associated with risk of preeclampsia. Nat Genet 2017; 49:1255.

      125 125. Gray KJ, Saxena R, Karumanchi SA. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Obstet Gynecol 2018; 218:211.

      126 126. Fisher R, Hodges M. Genomic imprinting in gestational trophoblastic disease—a review. Placenta 2003; 24:S111.

      127 127. Lage JM, Mark SD, Roberts DJ, et al. A flow cytometric study of 137 fresh hydropic placentas: correlation between types of hydatidiform moles and nuclear DNA ploidy. Obstet Gynecol 1992; 79:403.

      128 128. Barton SC, Surani M, Norris M. Role of paternal and maternal genomes in mouse development. Nature 1984; 311:374.

      129 129. Surani M, Barton SC, Norris M. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308:548.

      130 130. Abdalla EM, Hayward BE, Shamseddin A, et al. Recurrent hydatidiform mole: detection of two novel mutations in the NLRP7 gene in two Egyptian families. Eur J Obstet Gynecol Reprod Biol 2012; 164:211.

      131 131. Wang CM, Dixon PH, Decordova S, et al. Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine‐rich region. J Med Genet 2009; 46:569.

      132 132. Parry DA, Logan CV, Hayward BE, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet 2011; 89:451.

      133 133. El‐Maarri O, Seoud M, Coullin P, et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet 2003; 12:1405.

      134 134. Hayward BE, De Vos M, Talati N, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat 2009; 30:E629.

      135 135. Sanchez‐Delgado M, Martin‐Trujillo A, Tayama C, et al. Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal‐effect mutations reveals widespread placenta‐specific imprinting. PLoS Genet 2015; 11:e1005644.

      136 136. Redline RW, Hassold T, Zaragoza MV. Prevalence of the partial molar phenotype in triploidy of maternal and paternal origin. Hum Pathol 1998; 29:505.

      137 137. McFadden DE, Pantzar JT. Placental pathology of triploidy. Hum Pathol 1996; 27:1018.

      138 138. Kagan KO, Anderson JM, Anwandter G, et al. Screening for triploidy by the risk algorithms for trisomies 21, 18 and 13 at 11 weeks to 13 weeks and 6 days of gestation. Prenat Diagn 2008; 28:1209.

      139 139. McFadden DE, Hulait G, Lockitch G, et al. Maternal serum screening in triploidy. Prenat Diagn 2002; 22:1113.

Скачать книгу