Genetic Disorders and the Fetus. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Genetic Disorders and the Fetus - Группа авторов страница 179

Genetic Disorders and the Fetus - Группа авторов

Скачать книгу

A, Fleming A, et al. Marked abnormal quadruple screen in a patient with severe preeclampsia at 20 weeks with a triploid fetus. J Matern Fetal Neonatal Med 2006; 19:443.

      141 141. Gibson B, Muir‐Padilla J, Champeaux A, et al. Mesenchymal dysplasia of the placenta. Placenta 2004; 25:671.

      142 142. Jauniaux E, Nicolaides K, Hustin J. Perinatal features associated with placental mesenchymal dysplasia. Placenta 1997; 18:701.

      143 143. Matsui H, Iitsuka Y, Yamazawa K, et al. Placental mesenchymal dysplasia initially diagnosed as partial mole. Pathol Int 2003; 53:810.

      144 144. Ohyama M, Kojyo T, Gotoda H, et al. Mesenchymal dysplasia of the placenta. Pathol Int 2000; 50:759.

      145 145. Paradinas F, Sebire N, Fisher R, et al. Pseudo‐partial moles: placental stem vessel hydrops and the association with Beckwith–Wiedemann syndrome and complete moles. Histopathology 2001; 39:447.

      146 146. Kaiser‐Rogers KA, McFadden DE, Livasy CA, et al. Androgenetic/biparental mosaicism causes placental mesenchymal dysplasia. J Med Genet 2006; 43:187.

      147 147. Robinson WP, Lauzon JL, Innes AM, et al. Origin and outcome of pregnancies affected by androgenetic/biparental chimerism. Hum Reprod 2007; 22:1114.

      148 148. Surti U, Hill LM, Dunn J, et al. Twin pregnancy with a chimeric androgenetic and biparental placenta in one twin displaying placental mesenchymal dysplasia phenotype. Prenat Diagn 2005; 25:1048.

      149 149. Robinson W, Slee J, Smith N, et al. Placental mesenchymal dysplasia associated with fetal overgrowth and mosaic deletion of the maternal copy of 11p15. 5. Am J Med Genet A 2007; 143:1752.

      150 150. Gogiel M, Begemann M, Spengler S, et al. Genome‐wide paternal uniparental disomy mosaicism in a woman with Beckwith–Wiedemann syndrome and ovarian steroid cell tumour. Eur J Hum Genet 2013; 21:788.

      151 151. Ohtsuka Y, Higashimoto K, Sasaki K, et al. Autosomal recessive cystinuria caused by genome‐wide paternal uniparental isodisomy in a patient with Beckwith–Wiedemann syndrome. Clin Genet 2015; 88:261.

      152 152. Inbar‐Feigenberg M, Choufani S, Cytrynbaum C, et al. Mosaicism for genome‐wide paternal uniparental disomy with features of multiple imprinting disorders: diagnostic and management issues. Am J Med Genet A 2013; 161:13.

      153 153. Laberge JM, Patenaude Y, Desilets V, et al. Large hepatic mesenchymal hamartoma leading to mid‐trimester fetal demise. Fetal Diagn Ther 2005; 20:141.

      154 154. Reed RC, Beischel L, Schoof J, et al. Androgenetic/biparental mosaicism in an infant with hepatic mesenchymal hamartoma and placental mesenchymal dysplasia. Pediatr Dev Pathol 2008; 11:377.

      155 155. Lin J, Cole BL, Qin X, Zhang M, et al. Occult androgenetic‐biparental mosaicism and sporadic hepatic mesenchymal hamartoma. Pediatr Dev Pathol 2011; 14:360.

      156 156. Kapur RP, Berry JE, Tsuchiya KD, et al. Activation of the Chromosome 19q microRNA cluster in sporadic and androgenetic‐biparental mosaicism–associated hepatic mesenchymal hamartoma. Pediatr Dev Pathol 2014; 17:75.

      157 157. Bree AF, Siegfried E, Sotelo‐Avila C, et al. Infantile hemangiomas: speculation on placental trophoblastic origin. Arch Dermatol 2001; 137:573.

      158 158. Itinteang T, Tan ST, Guthrie S, et al. A placental chorionic villous mesenchymal core cellular origin for infantile haemangioma. J Clin Pathol 2011; 64:870.

      159 159. Sun Z, Yi C, Zhao H, et al. Infantile hemangioma is originated from placental trophoblast, fact or fiction? Med Hypotheses 2008; 71:444.

      160 160. Schroeder DI, Blair JD, Lott P, et al. The human placenta methylome. Proc Natl Acad Sci U S A 2013; 110:6037.

      161 161. Novakovic B, Saffery R. Placental pseudo‐malignancy from a DNA methylation perspective: unanswered questions and future directions. Front Genet 2013; 4.

      162 162. Price EM, Cotton AM, Peñaherrera MS, et al. Different measures of “genome‐wide” DNA methylation exhibit unique properties in placental and somatic tissues. Epigenetics 2012; 7:652.

      163 163. Cotton AM, Avila L, Penaherrera MS, et al. Inactive X chromosome‐specific reduction in placental DNA methylation. Hum Mol Genet 2009; 18:3544.

      164 164. Blair JD, Yuen RK, Lim BK, et al. Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early‐onset pre‐eclampsia. Mol Hum Reprod 2013; 19:697.

      165 165. Chu T, Bunce K, Shaw P, et al. Comprehensive analysis of preeclampsia‐associated DNA methylation in the placenta. PLoS One 2014; 9:e107318.

      166 166. Anton L, Brown AG, Bartolomei MS, et al. Differential methylation of genes associated with cell adhesion in preeclamptic placentas. PLoS One 2014; 9:e100148.

      167 167. Jia R, Zhang X, Hu P, et al. Screening for differential methylation status in human placenta in preeclampsia using a CpG island plus promoter microarray. Int J Mol Med 2012; 30:133.

      168 168. Wilson SL, Leavey K, Cox BJ, et al. Mining DNA methylation alterations towards a classification of placental pathologies. Hum Mol Genet 2017; 27:135.

      169 169. Lee Y, Choufani S, Weksberg R, et al. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging (Albany NY) 2019; 11:4238.

      170 170. Bourque D, Penaherrera M, Yuen R, et al. The utility of quantitative methylation assays at imprinted genes for the diagnosis of fetal and placental disorders. Clin Genet 2011; 79:169.

      171 171. Monk D, Sanches R, Arnaud P, et al. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS‐IGF2 isoforms show differences between mouse and human. Hum Mol Genet 2006; 15:1259.

      172 172. Yuen RK, Jiang R, Peñaherrera MS, et al. Genome‐wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin 2011; 4:10.

      173 173. Penaherrera MS, Jiang R, Avila L, et al. Patterns of placental development evaluated by X chromosome inactivation profiling provide a basis to evaluate the origin of epigenetic variation. Hum Reprod 2012; 27:1745.

      174 174. de Mello, Joana Carvalho Moreira, et al. Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele‐specific gene expression along the X chromosome. PloS One 2010; 5:e10947.

      175 175. Yuen R, Robinson W. Review: a high capacity of the human placenta for genetic and epigenetic variation: implications for assessing pregnancy outcome. Placenta 2011; 32:S136.

      176 176. Sibley CP, Brownbill P, Dilworth M, et al. Adaptation in placental nutrient supply to meet fetal growth demand: implications for programming. Placenta 2010; 31:S70.

      177 177. Lunney L. Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta 1998; 19:105.

      178 178. Anblagan D, Jones NW, Costigan C, et al. Maternal smoking during pregnancy and fetal organ growth: a magnetic resonance imaging study. PLoS One 2013; 8:e67223.

      179 179. Christianson RE. Gross differences observed in the placentas of smokers and nonsmokers. Am J Epidemiol 1979; 110:178.

      180 180. Tegethoff M, Greene N, Olsen J, et al. Maternal psychosocial stress during pregnancy and placenta weight: evidence from a national cohort study. PLoS One 2010; 5:e14478.

      181 181.

Скачать книгу