Small-Angle Scattering. Ian W. Hamley

Чтение книги онлайн.

Читать онлайн книгу Small-Angle Scattering - Ian W. Hamley страница 24

Small-Angle Scattering - Ian W. Hamley

Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_39b31279-7740-5298-a0b4-e25f48bf66cb.png" alt="upper I left-parenthesis q right-parenthesis equals integral Subscript 0 Superscript infinity Baseline upper D left-parenthesis upper R prime right-parenthesis upper P 0 left-parenthesis q comma upper R Superscript prime Baseline right-parenthesis italic d upper R Superscript prime Baseline"/>

      Here the subscript 0 has been added to the form factor, in order to emphasize that this is the term for the monodisperse system.

      (1.101)upper D left-parenthesis upper R Superscript prime Baseline right-parenthesis equals c period exp left-parenthesis minus StartFraction left-parenthesis upper R prime minus upper R right-parenthesis squared Over 2 sigma squared EndFraction right-parenthesis

Graph depicts the influence of polydispersity on the form factor of a sphere with R = 30 Å in terms of a Gaussian standard deviation with width σ (in Å) indicated.

      Here σ is the standard deviation, which is related to the full width at half maximum by FWHM equals 2 StartRoot 2 ln 2 EndRoot sigma, and c is a normalization constant. Other forms of distribution can be used and may be motivated by known dispersity distributions (based on the system synthesis, for example), for example log‐normal functions, Schulz‐Zimm functions etc.

      It is clear from the example of calculated form factors for a uniform sphere in Figure 1.19 that increasing σ causes the form factor oscillations to get progressively washed out such that they are largely eliminated for σ = 7.5 Å (25% of the radius R).

Graph depicts the comparison of form factor of a polydisperse sphere and a monodisperse ellipsoid with R1 = 29 Å and R2 = 34.8 Å.

      Polymers adopt coiled conformations. In the simplest picture, these are described as ideal Gaussian coils. Polymers in the melt or in solution (under theta conditions) adopt this conformation which is the most basic model of polymer conformation. The form factor for Gaussian coils can easily be calculated (as follows) to yield the Debye function. By analogy with Eq. (1.18), but integrating over a Gaussian distribution the intensity (form factor) is [61]

      The Gaussian function for a random coil depends on the end‐to‐end distance between points i and j, Rij and |ij|, which is the number of links between these points:

      (1.103)p Subscript italic Gauss Baseline left-parenthesis StartAbsoluteValue i minus j EndAbsoluteValue comma upper R Subscript italic i j Baseline right-parenthesis equals left-parenthesis StartFraction 3 Over 2 pi bar i minus j bar b squared EndFraction right-parenthesis Superscript 3 slash 2 Baseline exp left-parenthesis minus StartFraction 3 upper R Subscript italic i j Superscript 2 Baseline Over 2 bar i minus j bar b squared EndFraction right-parenthesis

      The integral over Rij can be evaluated using

      (1.104)integral Subscript 0 Superscript infinity Baseline upper R Subscript italic i j Baseline sine left-parenthesis q upper R Subscript italic i j Baseline right-parenthesis exp left-parenthesis minus StartFraction upper R Subscript italic i j Superscript 2 Baseline Over x EndFraction right-parenthesis d upper R Subscript italic i j Baseline equals StartFraction pi Superscript 1 slash 2 Baseline q x Superscript 3 slash 2 Baseline Over 4 EndFraction exp left-parenthesis minus StartFraction q squared x Over 4 EndFraction right-parenthesis

      (1.105)upper P left-parenthesis q right-parenthesis equals StartFraction 1 Over upper N squared EndFraction sigma-summation Underscript i Endscripts sigma-summation Underscript j Endscripts exp left-parenthesis minus StartFraction q squared b squared bar i minus j bar Over 6 EndFraction right-parenthesis

      (1.106)upper P left-parenthesis q right-parenthesis equals StartFraction 1 Over upper N squared EndFraction integral Subscript 0 Superscript upper N Baseline integral Subscript 0 Superscript upper N Baseline exp left-parenthesis minus StartFraction q squared b squared Over 6 EndFraction bar u minus v bar right-parenthesis italic dudv

      This can be evaluated [61] to give

Скачать книгу