Small-Angle Scattering. Ian W. Hamley

Чтение книги онлайн.

Читать онлайн книгу Small-Angle Scattering - Ian W. Hamley страница 26

Small-Angle Scattering - Ian W. Hamley

Скачать книгу

alt="StartFraction 1 Over upper S left-parenthesis 0 right-parenthesis EndFraction equals StartFraction 1 Over phi upper N Subscript upper A Baseline EndFraction plus StartFraction 1 Over left-parenthesis 1 minus phi right-parenthesis upper N Subscript upper B Baseline EndFraction minus 2 chi"/>

      This is generalized for non‐zero wavenumbers using the random‐phase approximation (RPA) to give [12, 49, 61, 64]

      Here P(q, N) is the corresponding form factor of an ideal chain, i.e. the Debye function (Eq. (1.107)). These expressions apply to the case of polymers in solution, the subscripts A and B referring to solvent and solute. These expressions are also useful for the case of blends of protonated and deuterated polymers in SANS studies (see Section 5.8), where A and B label the respective unlabelled and labelled chains. The RPA is a mean field method, widely employed in polymer science to calculate the structure factor in terms of the form factor of single chains [62].

      SAS data from blends is often fitted using the Ornstein‐Zernike function:

      (1.118)upper S left-parenthesis 0 right-parenthesis equals StartFraction 1 Over phi upper N Subscript upper A Baseline plus left-parenthesis 1 minus phi right-parenthesis upper N Subscript upper B Baseline minus 2 chi EndFraction

      (1.119)xi equals StartRoot StartFraction b squared upper S left-parenthesis 0 right-parenthesis Over 12 phi left-parenthesis 1 minus phi right-parenthesis EndFraction EndRoot

      Analogous equations to Eq. (1.116) have been obtained for block copolymer melts, also using the random‐phase approximation. The result for a diblock copolymer (degree of polymerization N, Flory‐Huggins interaction parameter χ and volume fraction of one component f) is [28, 66]

      (1.121)g left-parenthesis f comma upper X right-parenthesis equals StartFraction 2 left-parenthesis e Superscript negative italic f upper X Baseline plus italic f upper X minus 1 right-parenthesis Over upper X squared EndFraction

      and

      (1.122)upper F left-parenthesis upper X right-parenthesis equals StartFraction g left-parenthesis 1 comma upper X right-parenthesis Over g left-parenthesis f comma upper X right-parenthesis g left-parenthesis 1 minus f comma upper X right-parenthesis minus one fourth left-bracket g left-parenthesis 1 comma x right-parenthesis minus g left-parenthesis f comma upper X right-parenthesis minus g left-parenthesis 1 minus f comma upper X right-parenthesis right-bracket squared EndFraction

Graph depicts the structure factor for a diblock copolymer melt with f = 0.25 at three values of χN indicated. The order-disorder transition within this model occurs at χN = 17.6 at this composition.

      Source: From Leibler [66]. © 1980, American Chemical Society.

      Further information about scattering from block copolymers can be found elsewhere [28, 67, 68].

      1 1. van de Hulst, H.C. (1957). Light Scattering by Small Particles. New York: Dover.

      2 2. Brown, W. (ed.) (1996). Light Scattering ‐ Principles and Development. Oxford: Oxford University Press.

      3 3. Lindner, P. and Zemb, T. (eds.) (2002). Neutrons, X‐Rays and Light. Scattering Methods Applied to Soft Condensed Matter. Amsterdam: Elsevier.

      4 4. Glatter, O. (2018). Scattering Methods and their Application in Colloid and Interface Science. Amsterdam: Elsevier.

      5 5. Guinier, A. and Fournet, G. (1955). Small Angle Scattering of X‐Rays. New York: Wiley.

      6 6. Glatter, O. and Kratky, O. (eds.) (1982). Small Angle X‐Ray Scattering. London: Academic.

      7 7. Feigin, L.A. and Svergun, D.I. (1987). Structure Analysis by Small‐Angle X‐Ray and Neutron Scattering. New York: Plenum.

      8 8. Hamley, I.W. (1991). Scattering from uniform, cylindrically symmetric particles in liquid crystal phases. The Journal of Chemical Physics 95: 9376–9383.

      9 9. Svergun, D.I. and Koch, M.H.J. (2003). Small‐angle scattering studies of biological macromolecules in solution. Reports on Progress in Physics 66: 1735–1782.

      10 10. Glatter, O. (2002). The inverse scattering problem in small‐angle scattering. In: Neutrons, X‐Rays and Light Scattering Methods Applied to Soft Condensed

Скачать книгу