Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей. Марат Авдыев
Чтение книги онлайн.
Читать онлайн книгу Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев страница 12
В итоге Артур с отцом купили в магазине только материалы тонкой обработки тонкие строганные рейки 10 х 20 мм, наличники для окон 10 х 70 мм в магазине, а остальное -на базе.
Практическое правило:
Для того чтобы быстро и удачно вести переговоры о цене, где требуется сопоставлять трудно сопоставимые объёмы, величины и быстро производить в уме расчёты, рекомендуется выбрать и рассчитать стоимостные и др. характеристики стандартных образцов (шаблонов), на основании которых можно легко производить несложные вычисления. Этот приём универсален, он используется в технике, военном деле, социологических исследованиях, и мы будем обращаться к нему неоднократно.
Смена масштаба не меняет сути явления, но помогает в расчётах.
Глава 3. Подготовка в восхождению
Основы комбинаторики. Треугольник Паскаля
Выходные родители Татьяны и Артура старались посвятить спорту. Погода была самая что ни на есть лыжная: солнце, мягкий лёгкий снег и полное безветрие. И семья из четырех человек решила поехать на С разрешения родителей Татьяна пригласила профессора Борщова и Матвея, благо в большом автомобиле семьи было ровно шесть мест. Между Артуром и Татьяной возник спор: кто где будет садиться в авто? Конечно место водителя – не в счёт, остаётся пять свободных мест. Для простоты можно условно считать, что в кресле первого ряда может сидеть как взрослый, так ребёнок. Сколько различных комбинаций возможно?
Перестановки, формулы комбинаторики
Допустим, что все пять пассажиров рассчитались по номерам: 1, 2, 3, 4, 5. Первый пассажир может выбрать любое из пяти мест, второй – любое из оставшихся свободных четырёх, третий – любое из свободных трёх и т. д. В результате имеем:
5 * 4 * 3 * 2 * 1 = 5!
Обобщение. Будем переставлять их всеми возможными способами n объектов, при этом их общее количество остается неизменными, меняется только их порядок. Получившиеся комбинации называются перестановками, а их число равно:
Pn =n! =1⋅2⋅3⋅…⋅ (n—1) ⋅n
Символ n! называется факториалом и обозначает произведение всех целых чисел от 1 до n. По определению, считают, что 0!=1 и 1!=1.
Перестановкой из n элементов (например чисел 1, 2, … n) называется всякий упорядоченный набор из этих элементов.
Число сочетаний
Теперь рассчитаем число сочетаний книг из библиотеки, буккроссинга. На первом этаже подъезда дома Татьяны и Артура инициативная группа создала полку для обмена книгами буккроссинг. Сегодня на полке осталось 7 книг, Все книги были интересными, но Артур решился позволить себе прочитать лишь три книги из-за высокой учебной нагрузки. Каково число вариантов выбора трёх книг из семи?
Чтобы