Finite Element Analysis. Barna Szabó

Чтение книги онлайн.

Читать онлайн книгу Finite Element Analysis - Barna Szabó страница 28

Автор:
Жанр:
Серия:
Издательство:
Finite Element Analysis - Barna Szabó

Скачать книгу

href="#fb3_img_img_2b124794-33bf-5667-9326-97cafe346799.png" alt="Graph depicts typical finite element basis functions in one dimension."/>
Element number
Numbering 1 2 3
local 1 2 3 1 2 1 2 3 4
global 1 2 5 2 3 3 4 6 7

      We denote c Subscript i j Superscript left-parenthesis k right-parenthesis Baseline equals k Subscript i j Superscript left-parenthesis k right-parenthesis Baseline plus m Subscript i j Superscript left-parenthesis k right-parenthesis and, using equations (1.62) and (1.67), write upper B left-parenthesis u Subscript n Baseline comma v Subscript n Baseline right-parenthesis in the following form:

StartLayout 1st Row 1st Column upper B left-parenthesis u Subscript n Baseline comma v Subscript n Baseline right-parenthesis 2nd Column equals StartLayout 1st Row a 1 a 2 a 5 2nd Row StartLayout 1st Row b 1 2nd Row b 2 3rd Row b 5 EndLayout Start 3 By 3 Matrix 1st Row 1st Column c 11 Superscript left-parenthesis 1 right-parenthesis Baseline 2nd Column c 12 Superscript left-parenthesis 1 right-parenthesis Baseline 3rd Column c 13 Superscript left-parenthesis 1 right-parenthesis Baseline 2nd Row 1st Column c 21 Superscript left-parenthesis 1 right-parenthesis Baseline 2nd Column c 22 Superscript left-parenthesis 1 right-parenthesis Baseline 3rd Column c 23 Superscript left-parenthesis 1 right-parenthesis Baseline 3rd Row 1st Column c 31 Superscript left-parenthesis 1 right-parenthesis Baseline 2nd Column c 32 Superscript left-parenthesis 1 right-parenthesis Baseline 3rd Column c 33 Superscript left-parenthesis 1 right-parenthesis Baseline EndMatrix EndLayout plus StartLayout 1st Row a 2 a 3 2nd Row StartLayout 1st Row b 2 2nd Row b 3 EndLayout Start 2 By 2 Matrix 1st Row 1st Column c 11 Superscript left-parenthesis 2 right-parenthesis Baseline 2nd Column c 12 Superscript left-parenthesis 2 right-parenthesis Baseline 2nd Row 1st Column c 21 Superscript left-parenthesis 2 right-parenthesis Baseline 2nd Column c 22 Superscript left-parenthesis 2 right-parenthesis Baseline EndMatrix EndLayout 2nd Row 1st Column Blank 2nd Column plus StartLayout 1st Row a 3 a 4 a 6 a 7 2nd Row StartLayout 1st Row b 3 2nd Row b 4 3rd Row b 6 4th Row b 7 EndLayout Start 4 By 4 Matrix 1st Row 1st Column c 11 Superscript left-parenthesis 3 right-parenthesis 2nd Column c 12 Superscript left-parenthesis 3 right-parenthesis 3rd Column c 13 Superscript left-parenthesis 3 right-parenthesis 4th Column c 14 Superscript left-parenthesis 3 right-parenthesis 2nd Row 1st Column c 21 Superscript left-parenthesis 3 right-parenthesis 2nd Column c 22 Superscript left-parenthesis 3 right-parenthesis 3rd Column c 23 Superscript left-parenthesis 3 right-parenthesis 4th Column c 24 Superscript left-parenthesis 3 right-parenthesis 3rd Row 1st Column c 31 Superscript left-parenthesis 3 right-parenthesis 2nd Column c 32 Superscript left-parenthesis 3 right-parenthesis 3rd Column c 33 Superscript left-parenthesis 3 right-parenthesis 4th Column c 34 Superscript left-parenthesis 3 right-parenthesis 4th Row 1st Column c 41 Superscript left-parenthesis 3 right-parenthesis 2nd Column c 42 Superscript left-parenthesis 3 right-parenthesis 3rd Column c 43 Superscript left-parenthesis 3 right-parenthesis 4th Column c 44 Superscript left-parenthesis 3 right-parenthesis EndMatrix EndLayout EndLayout

      where the elements within the brackets are in the local numbering system whereas the coefficients aj and bi outside of the brackets are in the global system. The superscripts indicate the element numbers. The terms multiplied by a Subscript j Baseline b Subscript i are summed to obtain the elements of the assembled coefficient matrix which will be denoted by c Subscript i j. For example,

c 11 equals c 11 Superscript left-parenthesis 1 right-parenthesis Baseline comma c 22 equals c 22 Superscript left-parenthesis 1 right-parenthesis Baseline plus c 11 Superscript left-parenthesis 2 right-parenthesis Baseline comma c 33 equals c 22 Superscript left-parenthesis 2 right-parenthesis Baseline plus c 11 Superscript left-parenthesis 3 right-parenthesis Baseline comma c 77 equals c 44 Superscript left-parenthesis 3 right-parenthesis Baseline period

      Assuming that the boundary conditions do not include Dirichlet conditions, the bilinear form can be written in terms of the 7 times 7 coefficient matrix as:

      (1.76)StartLayout 1st Row 1st Column upper B left-parenthesis u Subscript n Baseline comma v Subscript n Baseline right-parenthesis equals 2nd Column sigma-summation Underscript j equals 1 Overscript 7 Endscripts sigma-summation Underscript i equals 1 Overscript 7 Endscripts c Subscript i j Baseline a Subscript j Baseline b Subscript i Baseline equals left-brace b 1 b 2 midline-horizontal-ellipsis b 7 right-brace Start 4 By 4 Matrix 1st Row 1st Column c 11 2nd Column c 12 3rd Column midline-horizontal-ellipsis 4th Column c 17 2nd Row 1st Column c 21 2nd Column c 22 3rd Column Blank 4th Column c 27 3rd Row 1st Column vertical-ellipsis 2nd Column Blank 3rd Column Blank 4th Column vertical-ellipsis 4th Row 1st Column c 71 2nd Column c 72 3rd Column midline-horizontal-ellipsis 4th Column c 77 EndMatrix Start 4 By 1 Matrix 1st Row a 1 2nd Row a 2 3rd Row vertical-ellipsis 4th Row a 7 EndMatrix 2nd Row 1st Column identical-to 2nd Column StartSet b EndSet Superscript upper T Baseline left-bracket upper C right-bracket StartSet a EndSet period EndLayout

      The treatment of Dirichlet conditions will be discussed separately in the next section.

      The assembly of the right hand side vector from the element‐level right hand side vectors is analogous to the procedure just described. Referring to eq. (1.73) we write upper F left-parenthesis v Subscript n Baseline right-parenthesis in the following form:

StartLayout 1st Row 1st Column upper F left-parenthesis v Subscript n Baseline right-parenthesis equals 2nd 
						<noindex><p style= Скачать книгу