Finite Element Analysis. Barna Szabó

Чтение книги онлайн.

Читать онлайн книгу Finite Element Analysis - Barna Szabó страница 29

Автор:
Жанр:
Серия:
Издательство:
Finite Element Analysis - Barna Szabó

Скачать книгу

Column left-brace b 1 b 2 b 5 right-brace Start 3 By 1 Matrix 1st Row r 1 Superscript left-parenthesis 1 right-parenthesis 2nd Row r 2 Superscript left-parenthesis 1 right-parenthesis 3rd Row r 3 Superscript left-parenthesis 1 right-parenthesis EndMatrix plus left-brace b 2 b 3 right-brace StartBinomialOrMatrix r 1 Superscript left-parenthesis 2 right-parenthesis Choose r 2 Superscript left-parenthesis 2 right-parenthesis EndBinomialOrMatrix plus left-brace b 3 b 4 b 6 b 7 right-brace Start 4 By 1 Matrix 1st Row r 1 Superscript left-parenthesis 3 right-parenthesis 2nd Row r 2 Superscript left-parenthesis 3 right-parenthesis 3rd Row r 3 Superscript left-parenthesis 3 right-parenthesis 4th Row r 4 Superscript left-parenthesis 3 right-parenthesis EndMatrix 2nd Row 1st Column equals 2nd Column left-brace b 1 b 2 midline-horizontal-ellipsis b 7 right-brace Start 4 By 1 Matrix 1st Row r 1 2nd Row r 2 3rd Row vertical-ellipsis 4th Row r 7 EndMatrix identical-to StartSet b EndSet Superscript upper T Baseline StartSet r EndSet EndLayout"/>

      where r 1 equals r 1 Superscript left-parenthesis 1 right-parenthesis, r 2 equals r 2 Superscript left-parenthesis 1 right-parenthesis Baseline plus r 1 Superscript left-parenthesis 2 right-parenthesis, r 3 equals r 2 Superscript left-parenthesis 2 right-parenthesis Baseline plus r 1 Superscript left-parenthesis 3 right-parenthesis, etc.

      1.3.6 Condensation

      Each element has p minus 1 internal basis functions. Those elements of the coefficient matrix which are associated with the internal basis functions can be eliminated at the element level. This process is called condensation.

      Let us partition the coefficient matrix and right hand side vector of a finite element with p greater-than-or-equal-to 2 such that

Start 2 By 2 Matrix 1st Row 1st Column bold upper C 11 2nd Column bold upper C 12 2nd Row 1st Column bold upper C 21 2nd Column bold upper C 22 EndMatrix StartBinomialOrMatrix bold a 1 Choose bold a 2 EndBinomialOrMatrix equals StartBinomialOrMatrix bold r 1 Choose bold r 2 EndBinomialOrMatrix

      where the bold a 1 equals left-brace a 1 a 2 right-brace Superscript upper T and bold a 2 equals left-brace a 3 a 4 midline-horizontal-ellipsis a Subscript p plus 1 Baseline right-brace Superscript upper T. The coefficient matrix is symmetric therefore bold upper C 21 equals bold upper C 12 Superscript upper T. Using

      we get

      (1.78)ModifyingBelow left-parenthesis bold upper C 11 minus bold upper C 12 bold upper C 22 Superscript negative 1 Baseline bold upper C 21 right-parenthesis With presentation form for vertical right-brace Underscript Condensed left-bracket upper C right-bracket Endscripts bold a 1 equals ModifyingBelow bold r 1 minus bold upper C 12 bold upper C 22 Superscript negative 1 Baseline bold r 2 With presentation form for vertical right-brace Underscript Condensed StartSet r EndSet Endscripts period

      1.3.7 Enforcement of Dirichlet boundary conditions

      When Dirichlet conditions are specified on either or both boundary points then u element-of ModifyingAbove upper S With tilde left-parenthesis upper I right-parenthesis is split into two functions; a function u overbar element-of upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis and an arbitrary specific function from ModifyingAbove upper S With tilde left-parenthesis upper I right-parenthesis, denoted by u Superscript black star. We then seek u overbar element-of upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis such that

      for all v element-of upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis. Observe that the solution u equals u overbar plus u Superscript black star is independent of the choice of u Superscript black star.

      We denote the global numbers of the basis functions that are unity at x equals 0 and x equals script l by K and L respectively. For instance, in Example 1.6 upper K equals 1 and upper L equals 4. It is advantageous to define u Superscript black star in terms of phi Subscript upper K Baseline left-parenthesis x right-parenthesis and phi Subscript upper L Baseline left-parenthesis x right-parenthesis:

Скачать книгу