Individual Participant Data Meta-Analysis. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Individual Participant Data Meta-Analysis - Группа авторов страница 20

Individual Participant Data Meta-Analysis - Группа авторов

Скачать книгу

aggregate data or IPD are ultimately used. In this situation, conducting a meta‐analysis based on IPD, in particular, may not be the best use of time, effort and resources,47 unless it is specifically needed to inform the rationale and design (e.g. sample size) of a new trial that is geared to increasing the absolute information size for a subsequent meta‐analysis (Chapter 12).71,72

      The absolute information size of a meta‐analysis may differ depending on whether aggregate data or IPD can be obtained, as suitable aggregate data may not be available for all trials, and similarly IPD may not be obtainable for all trials. It has been shown that when the absolute information size represented by an aggregate data meta‐analysis is small, the overall results are less likely to agree with those of a corresponding IPD meta‐analysis project.47

      Even when the absolute information size of the available aggregate data is large, and power considered adequate, if these data represent a small proportion of all eligible participants (for example, because aggregate data for particular trials, participants or outcomes are not reported, or the follow‐up is limited), then the relative information size will be small. Any meta‐analysis of such aggregate data would not only suffer from reduced precision, but could be potentially biased or otherwise unrepresentative.47 In this situation, if the collection of IPD were to bring about a substantial increase in the proportion of eligible trials, participants or events, thereby increasing the relative information size available for meta‐analysis, then the approach could add considerable value, and may also give very different results to an equivalent aggregate data meta‐analysis. For example, in the earlier example about the effects of ovarian oblation on survival in early breast cancer (Section 2.5), the collection of IPD brought about a substantial increase in the duration of follow‐up, and the consequent number of events compared to the aggregate data, increasing both reliability and precision.

      In contrast, if the absolute information size of the aggregate data is large (and so power considered sufficient), and the relative information size is also large (i.e. it represents a high proportion of the total eligible participants or events available from all existing trials), a meta‐analysis of these aggregate data would be expected to provide a reliable estimate. However, the aggregate data may only be sufficient in some respects, but not others. For example, whilst the absolute and relative information size of aggregate data may be sufficient when focussing on overall (unadjusted) treatment effects,47 they may be low when considering other measures (estimands) of interest, such as conditional treatment effects (i.e. adjusted for prognostic factors; see Chapters 5 and 6), subgroup results and treatment‐covariate interactions (see Chapter 7), and time‐dependent treatment effects (e.g. non‐constant hazard ratios) and multiple time‐points (see Chapter 13). IPD may substantially increase the information size for estimating such nuanced measures, and so researchers need to decide if they are a priority. For example, if an aggregate data meta‐analysis has large absolute and relative information sizes, and shows an overall benefit of treatment, this might provide a strong motivation for collecting IPD to examine subgroup effects or time‐dependent effects. In contrast, if there is no evidence of an overall effect based on such aggregate data, then there might be less justification for going to the trouble of collecting IPD, unless other reasons might warrant it (Table 2.2).

      2.6.4 Are IPD Needed to Improve the Quality of Analysis?

      Analyses may also be inconsistent across trials. For example, even in situations where estimates of treatment‐covariate interactions are reported for each trial, they may differ in their definitions of categorical covariates, handling of continuous covariates (e.g. age might be dichotomised in some trials, but not in others) and the assumed relationships (e.g. linear or non‐linear trends).

      All of these issues give rise to concern that a meta‐analysis based on aggregate data would not be robust or adequate for answering the research question of interest, and that an IPD meta‐analysis would be more comprehensive and flexible. Again, this can be determined only by first appraising the individual trial analyses, and evaluating which methods trial investigators used and the extent of aggregate data available.

      While there are many similarities between IPD and aggregate data meta‐analysis projects, they differ substantially in collaborative, data management and analytical aspects. If done well, the IPD approach can bring substantial improvements to both the quality of the data and the analyses, often increasing statistical power, and leading to more reliable results and more nuanced examinations, for example, those relating to treatment effect modifiers at the participant level (Chapter 7). However, IPD projects incur additional costs in terms of the time, resource and skills required (Chapter 3), and so should not be undertaken lightly. Hence, researchers must give careful consideration to the research question, and whether IPD will add value over existing aggregate data. If IPD are likely to add value, the next phase is to examine the feasibility of obtaining IPD, and to plan and initiate the IPD project, as described in Chapter 3.

       Lesley A. Stewart, Richard D. Riley, and Jayne F. Tierney

      Summary Points

       IPD meta‐analyses are major research projects that typically take upwards of two years to complete. Specific research funding is usually required, and they cannot be done on a volunteer basis or in spare time. They require broader skills than conventional systematic reviews and meta‐analyses of aggregate data, including greater statistical expertise and experience in managing participant‐level data.

       Many IPD meta‐analysis projects are collaborative, involving partnership with trial investigators who contribute IPD from their trials for re‐analysis and whose role is acknowledged through membership of a collaborative group and authorship arrangements.

Скачать книгу