Mathématiques et Mathématiciens: Pensées et Curiosités. Alphonse Rebière

Чтение книги онлайн.

Читать онлайн книгу Mathématiques et Mathématiciens: Pensées et Curiosités - Alphonse Rebière страница 3

Автор:
Серия:
Издательство:
Mathématiques et Mathématiciens: Pensées et Curiosités - Alphonse Rebière

Скачать книгу

corps tombant dans un précipice, on mesure la hauteur de la chute par le temps qu'il met à tomber; en d'autres cas, au contraire, le temps n'étant pas directement observable, sera déduit de la hauteur. Si donc on trouve une loi qui lie ces deux quantités et qui permette de conclure de l'une à l'autre, on aura réduit une grandeur non mesurable directement à une autre qui peut l'être. C'est là un problème mathématique. Autre exemple. Comment mesurer la distance des corps célestes qui sont inaccessibles? On regardera cette distance comme faisant partie d'un triangle, dont on connaîtra un côté et deux angles. Or, la géométrie nous apprend dans ce cas à découvrir les deux côtés du triangle, et par conséquent nous donne le moyen de construire le triangle dans lequel il suffira de tirer une ligne du sommet à la base pour avoir la distance réelle. Maintenant, la distance étant connue, on peut, du diamètre apparent conclure le diamètre réel, passer de là au volume et même au poids, en y ajoutant d'autres éléments.

      Paul Janet.

Décoration.

      Le mathématicien prépare d'avance des moules que le physicien viendra plus tard remplir.

      Taine.

      En d'autres termes, l'ordre mathématique inspire la conception de l'ordre physique.

Décoration.

       Les mathématiques offrent ce caractère particulier et bien remarquable que tout s'y démontre par le raisonnement seul, sans qu'on ait besoin de faire aucun emprunt à l'expérience, et que néanmoins tous les résultats obtenus sont susceptibles d'être confirmés par l'expérience, dans les limites d'exactitude que l'expérience comporte. Par là, les mathématiques réunissent au caractère de science rationnelle, celui de science positive, dans le sens que la langue moderne donne à ce mot.

      Cournot.

Décoration.

      Les mathématiques forment pour ainsi dire un pont entre la métaphysique et la physique.

      Kant.

Décoration.

      D'après Leibniz, il n'y a de mesure que «là où il y a antérieurement de l'ordre.» On peut dire, par suite, que les mathématiques sont la science de l'ordre.

Décoration.

      Quelques-uns ont prétendu que toute la partie des mathématiques qui n'est susceptible d'aucune vérification expérimentale devrait être transportée dans la philosophie. Tels seraient les nombres incommensurables et, à plus forte raison, les nombres négatifs et imaginaires. Mais on est arrivé à interpréter ces symboles d'une façon concrète, et du reste cette limitation si étroite et si arbitraire des mathématiques les restreindrait à presque rien.

Décoration.

      Les vérités géométriques sont en quelque sorte l'asymptote des vérités physiques, c'est-à-dire le terme dont celles-ci peuvent indéfiniment approcher, sans jamais y arriver exactement.

      d'Alembert.

Décoration.

      Les figures géométriques sont de pures conceptions de l'esprit et cependant la géométrie n'est pas seulement une science spéculative très propre à développer les facultés intellectuelles.....; mais elle est encore utile par ses nombreuses applications aux arts. Cela tient à ce que les volumes de certains corps, leurs surfaces, les portions communes à deux portions de ces surfaces peuvent être regardés comme étant sensiblement des volumes, des surfaces et des lignes géométriques.

      Compagnon.

Décoration.

      Avec des définitions précises et des axiomes certains, la Mathématique établit des déductions sûres tant que le raisonnement se maintient dans les voies de l'évidence logique. C'est pourquoi la science des grandeurs porte, à l'exclusion de toute autre, le titre glorieux d'«exacte».

       Cela signifie surtout que, moins qu'aucune autre, elle est sujette à l'erreur. La perception a ses méprises, la conception ses lacunes, l'induction ses témérités, l'opinion ses dissidences, l'observation ses mécomptes, l'expérience ses égarements. Seule, la déduction ne trompe point, quand elle suit la loi du raisonnement. La science qu'elle établit progresse avec plus ou moins de lenteur; mais ses vérités une fois démontrées, sont parfaites, définitives, et ne changent plus.

      La théorie des grandeurs est l'unique exemple d'une construction scientifique ne laissant rien à désirer..... À ce titre, elle méritait le nom de «science par excellence» (mathésis) que les Grecs lui avaient donné. Elle est la science type, l'idéal de connaissance certaine proposé pour modèle à toutes les sciences de fait, mais dont celles-ci ne se rapprochent qu'en lui empruntant sa méthode et en subordonnant leurs mensurations à ses lois.

      Bourdeau.

      Dire que les mathématiques ne laissent rien à désirer, c'est trop dire. Là aussi, il reste encore des questions à élucider.

Décoration.

      Ce qui est acquis dans les sciences de démonstration, dans les mathématiques, par exemple, est absolument parfait; ce qui est acquis dans les sciences d'observation est indéfiniment perfectible et conséquemment variable, ou du moins conserve ce caractère jusqu'au moment où la démonstration devient possible.

      Duval-Jouve.

Décoration.

      Les mathématiques ont des inventions très subtiles et qui peuvent beaucoup servir, tant à contenter les curieux qu'à faciliter tous les arts et à diminuer le travail des hommes.

      Descartes.

Décoration.

      Les objets de la Géométrie, disent-ils, n'ont aucune réalité et ne peuvent exister; des lignes sans largeur, des surfaces sans profondeur, un point mathématique, c'est-à-dire sans longueur, largeur, ni épaisseur, sont des êtres de raison, de pures chimères. Il en est de même des figures dont la Géométrie démontre les propriétés; il n'y a et il ne saurait y avoir aucun cercle parfait, aucune sphère parfaite: ainsi, concluent-ils, cette science ne s'occupe que d'objets chimériques et impossibles...

      ...........................

      ... Il importe peu aux géomètres qu'il existe physiquement une sphère parfaite, un plan parfait; ces figures ne sont que les limites intellectuelles des grandeurs matérielles qu'ils considèrent, et ce qu'ils démontrent à l'égard de ces limites est d'autant plus vrai pour les corps matériels, qu'ils en approchent davantage...

      ...........................

      ...

Скачать книгу